【題目】(1)如圖1,已知:在ABC中,BAC=90°,AB=AC,直線m經(jīng)過(guò)點(diǎn)A,BD直線m, CE直線m,垂足分別為點(diǎn)D、E.證明:DE=BD+CE.

(2)如圖2,將(1)中的條件改為:在ABC中,AB=AC,D、A、E三點(diǎn)都在直線m上,并且有BDA=AEC=BAC=α,其中α為任意銳角或鈍角.請(qǐng)問(wèn)結(jié)論DE=BD+CE是否成立?如成立,請(qǐng)你給出證明;若不成立,請(qǐng)說(shuō)明理由.

圖1 圖2

【答案】(1)、證明過(guò)程見(jiàn)解析;(2)、成立;理由見(jiàn)解析.

【解析】

試題分析:(1)、根據(jù)BD直線m,CE直線m得出BDA=AEC=90°,然后根據(jù)BAC=90°得出DBA=EAC,從而說(shuō)明ABD和CAE全等,得出BD=AE,AD=CE,從而得出答案;(2)、根據(jù)BDA=α得出DBA+BAD=180°α,根據(jù)BAC =α得出BAD+EAC=180°α,從而說(shuō)明DBA EAC,然后得出ABD和CAE全等,從而得出BD=AE,AD=CE,然后得出答案.

試題解析:(1)、BD直線m,CE直線m,垂足分別為D、E ∴∠BDA=AEC=90°

∴∠DBA+BAD=90° ∵∠BAC=90° ∴∠BAD+EAC=90° ∴∠DBA=EAC

ABD與CAE中 ∴△ABD≌△CAE

BD=AE,AD=CE DE=AD+AE=CE+BD

(2)、結(jié)論DE=BD+CE成立

ABD中,∵∠BDA=α ∴∠DBA+BAD=180°α ∵∠BAC =α ∴∠BAD+EAC=180°α

∴∠DBA EAC

ABD與CAE中, ∴△ABD≌△CAE BD=AE,AD=CE DE=AD+AE=CE+BD

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABCD中,點(diǎn)E、F分別在AB、CD上,且AE=CF.

(1)求證:ADE≌△CBF;

(2)若DF=BF,求證:四邊形DEBF為菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,ABC是直角三角形,ACB=90,AC=BC,OA=1,OC=4,拋物線y=+bx+c經(jīng)過(guò)A,B兩點(diǎn),拋物線的頂點(diǎn)為D.

(1)、求b,c的值;

(2)、點(diǎn)E是直角三角形ABC斜邊AB上一動(dòng)點(diǎn)(點(diǎn)A、B除外),過(guò)點(diǎn)E作x軸的垂線交拋物線于點(diǎn)F,當(dāng)線段EF的長(zhǎng)度最大時(shí),求點(diǎn)E的坐標(biāo);

(3)、在(2)的條件下:求以點(diǎn)E、B、F、D為頂點(diǎn)的四邊形的面積;在拋物線上是否存在一點(diǎn)P,使EFP是以EF為直角邊的直角三角形? 若存在,求出所有點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)將三張形狀、大小完全相同的平行四邊形透明紙片分別放在方格紙中,方格紙中的每個(gè)小正方形的邊長(zhǎng)均為1,并且平行四邊形 紙片的每個(gè)頂點(diǎn)與小正方形的頂點(diǎn)重合(如圖、圖、圖).

矩形(正方形)

,

分別在圖、圖、圖中,經(jīng)過(guò)平行四邊形紙片的任意一個(gè)頂點(diǎn)畫一條裁剪線,沿此裁剪線將平行四邊形紙片裁成兩部分,并把這兩部分重新拼成符合下列要求的幾何圖形.

要求:

(1)在左邊的平行四邊形紙片中畫一條裁剪線,然后在右邊相對(duì)應(yīng)的方格紙中,按實(shí)際大小畫出所拼成的符合要求的幾何圖形.

(2)裁成的兩部分在拼成幾何圖形時(shí)要互不重疊且不留空隙.

(3)所畫出的幾何圖形的各頂點(diǎn)必須與小正方形的頂點(diǎn)重合.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一艘漁船位于小島M的北偏東45°方向、距離小島180海里的A處,漁船從A處沿正南方向航行一段距離后,到達(dá)位于小島南偏東60°方向的B處。

(1)求漁船從A到B的航行過(guò)程中與小島M之間的最小距離(結(jié)果用根號(hào)表示):

(2)若漁船以20海里/小時(shí)的速度從B沿BM方向行駛,求漁船從B到達(dá)小島M的航行時(shí)間(結(jié)果精確到0.1小時(shí))。(參考數(shù)據(jù):

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知⊙O和直線L相交,圓心到直線L的距離為10cm,則⊙O的半徑可能為( )
A.10cm
B.6cm
C.12cm
D.以上都不對(duì)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】時(shí)光飛逝,小學(xué)、中學(xué)的學(xué)習(xí)時(shí)光已過(guò)去,九年的在校時(shí)間大約有16200小時(shí),請(qǐng)將數(shù)16200用科學(xué)記數(shù)法表示為__

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某果園2014年水果產(chǎn)量為100噸,2016年水果產(chǎn)量為144噸,則該果園水果產(chǎn)量的年平均增長(zhǎng)率為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線與y軸交于C點(diǎn),與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),且點(diǎn)A的橫坐標(biāo)為-1.

(1)求a的值;

(2)設(shè)拋物線的頂點(diǎn)P關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為,求點(diǎn)的坐標(biāo);

(3)將拋物線在A,B兩點(diǎn)之間的部分(包括A, B兩點(diǎn)),先向下平移3個(gè)單位,再向左平移m()個(gè)單位,平移后的圖象記為圖象G,若圖象G與直線無(wú)交點(diǎn),求m的取值范圍

查看答案和解析>>

同步練習(xí)冊(cè)答案