【題目】如圖①,Rt△ABC中,∠ABC=90°,∠CAB的平分線交BC于點O,以O為圓心,OB長為半徑作⊙O.
(1)求證:⊙O與AC相切.
(2)若AB=6,AC=10.
①求⊙O的半徑;
②如圖②,延長AO交⊙O于點D,過點D作⊙O的切線,分別交AC、AB的延長線于E、F,試求EF的長.
【答案】(1)見解析;(2)①;②
【解析】
(1)根據(jù)角平分線的性質(zhì),可以證明本結論成立;
(2)①根據(jù)切線的性質(zhì)可知AB=AM,根據(jù)勾股定理可以求得BC的長,進而可以求得圓的半徑的長;
②根據(jù)題意可以求得AD的長,然后根據(jù)三角形相似可以求得DF的長,由等腰三角形的性質(zhì)可以求得EF的長.
(1)證明:∵∠ABC=90°,∠CAB的平分線是AO,
∴點O到AB和到AC的距離相等,
∴點O到AC的距離等于圓O的半徑,
∴⊙O與AC相切;
(2)①作OM⊥AC于點M,如圖所示,
∵AB=6,AC=10,∠ABC=90°,
∴BC=8,AB=AM=6,
∴MC=4,OC=8-OB,
設圓O的半徑是r,
∴r2+42=(8-r)2
解得,r=3,
即⊙O的半徑是3;
②∵AB=6,BO=3,∠ABO=90°,
∴AO=3,
∴AD=3+3,
∵AD⊥EF,
∴∠ADF=90°,
∴∠ADF=∠ABO=90°,
∵∠DAF=∠BAO,
∴△DAF∽△BAO,
∴,
即,
解得,DF=,
∵AD平分∠EAF,AD⊥EF,
∴EF=2DF=3+3.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AB=5,AC=3,點D是BC上一動點,連接AD,將△ACD沿AD折疊,點C落在點C'處,連接C'D交AB于點E,連接BC',當△BC'D是直角三角形時,DE的長為_________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在△ABC中,∠BAC=90°,M是斜邊BC的中點,BN⊥AM,垂足為點N,且BN的延長線交AC于點D.
(1)求證:△ABC∽△ADB;
(2)如果BC=20,BD=15,求AB的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:在三角形中,把一邊的中點到這條邊的高線的距離叫做這條邊的中垂距.
例:如圖①,在△ABC中,D為邊BC的中點,AE⊥BC于E,則線段DE的長叫做邊BC的中垂距.
(1)設三角形一邊的中垂距為d(d≥0).若d=0,則這樣的三角形一定是________,推斷的數(shù)學依據(jù)是________.
(2)如圖②,在△ABC中,∠B=45°,AB=,BC=8,AD為邊BC的中線,求邊BC的中垂距.
(3)如圖③,在矩形ABCD中,AB=6,AD=4.點E為邊CD的中點,連結AE并延長交BC的延長線于點F,連結AC.求△ACF中邊AF的中垂距.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,二次函數(shù)y1=(x﹣2)(x﹣4)的圖象與x軸交于A、B兩點(點A在點B的左側(cè)),其對稱軸l與x軸交于點C,它的頂點為點D.
(1)寫出點D的坐標 .
(2)點P在對稱軸l上,位于點C上方,且CP=2CD,以P為頂點的二次函數(shù)y2=ax2+bx+c(a≠0)的圖象過點A.
①試說明二次函數(shù)y2=ax2+bx+c(a≠0)的圖象過點B;
②點R在二次函數(shù)y1=(x﹣2)(x﹣4)的圖象上,到x軸的距離為d,當點R的坐標為 時,二次函數(shù)y2=ax2+bx+c(a≠0)的圖象上有且只有三個點到x軸的距離等于2d;
③如圖2,已知0<m<2,過點M(0,m)作x軸的平行線,分別交二次函數(shù)y1=(x﹣2)(x﹣4)y2=ax2+bx+c(a≠0)的圖象于點E、F、G、H(點E、G在對稱軸l左側(cè)),過點H作x軸的垂線,垂足為點N,交二次函數(shù)y1=(x﹣2)(x﹣4)的圖象于點Q,若△GHN∽△EHQ,求實數(shù)m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖:007漁船在南海海面上沿正東方向勻速航行,在A點觀測到漁船C在北偏東60°方向的我國某傳統(tǒng)漁場捕魚作業(yè).若007漁船航向不變,航行半小時后到達B點,觀測到漁船C在東北方向上.問:007漁船再按原航向航行多長時間,離漁船C的距離最近?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,方格紙中的每個小方格都是邊長為1個單位長度的正方形,△ABC的頂
點都在格點上,建立平面直角坐標系.
(1)點A的坐標為 ,點C的坐標為 .
(2)將△ABC向左平移7個單位,請畫出平移后的△A1B1C1.若M為△ABC內(nèi)的一點,其坐標為(a,b),則平移后點M的對應點M1的坐標為 .
(3)以原點O為位似中心,將△ABC縮小,使變換后得到的△A2B2C2與△ABC對應邊的比為1∶2.請在網(wǎng)格內(nèi)畫出△A2B2C2,并寫出點A2的坐標: .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了傳承優(yōu)秀傳統(tǒng)文化,我市組織了一次初三年級1 200名學生參加的“漢字聽寫”大賽,為了更好地了解本次大賽的成績分布情況,隨機抽取了100名學生的成績(滿分50分),整理得到如下的統(tǒng)計圖表:
成績(分) | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 |
人數(shù) | 1 | 2 | 3 | 3 | 6 | 7 | 5 | 8 | 15 | 9 | 11 | 12 | 8 | 6 | 4 |
成績分組 | 頻數(shù) | 頻率(百分比) |
35≤x<38 | 3 | 0.03 |
38≤x<41 | a | 0.12 |
41≤x<44 | 20 | 0.20 |
44≤x<47 | 35 | 0.35 |
47≤x≤50 | 30 | b |
請根據(jù)所提供的信息解答下列問題:
(1)頻率統(tǒng)計表中a=________,b=_______;
(2)請補全頻數(shù)分布直方圖;
(3)請根據(jù)抽樣統(tǒng)計結果,估計該次大賽中成績不低于41分的學生有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】農(nóng)場有100棵果樹,每一棵樹平均結600個果子.現(xiàn)準備多種一些果樹以提高產(chǎn)量,根據(jù)經(jīng)驗估計,每多種一棵果樹,平均每棵樹就會少結5個果子.假設果園增種x棵果樹,果子總產(chǎn)量為y個.
(1)增種多少棵果樹,可以使果園的總產(chǎn)量最多?最多為多少?
(2)增種多少棵果樹,可以使果子的總產(chǎn)量在60400個以上?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com