【題目】如圖,方格紙中的每個小方格都是邊長為1個單位長度的正方形,△ABC的頂
點(diǎn)都在格點(diǎn)上,建立平面直角坐標(biāo)系.
(1)點(diǎn)A的坐標(biāo)為 ,點(diǎn)C的坐標(biāo)為 .
(2)將△ABC向左平移7個單位,請畫出平移后的△A1B1C1.若M為△ABC內(nèi)的一點(diǎn),其坐標(biāo)為(a,b),則平移后點(diǎn)M的對應(yīng)點(diǎn)M1的坐標(biāo)為 .
(3)以原點(diǎn)O為位似中心,將△ABC縮小,使變換后得到的△A2B2C2與△ABC對應(yīng)邊的比為1∶2.請?jiān)诰W(wǎng)格內(nèi)畫出△A2B2C2,并寫出點(diǎn)A2的坐標(biāo): .
【答案】 解:(1)(2,8) (6,6)如圖:(2)() (3)()
【解析】
(1)直接根據(jù)圖形即可寫出點(diǎn)A和C的坐標(biāo);
(2)找出三角形平移后各頂點(diǎn)的對應(yīng)點(diǎn),然后順次連接即可;根據(jù)平移的規(guī)律即可寫出點(diǎn)M平移后的坐標(biāo);
(3)根據(jù)位似變換的要求,找出變換后的對應(yīng)點(diǎn),然后順次連接各點(diǎn)即可,注意有兩種情況.
解:(1)A點(diǎn)坐標(biāo)為:(2,8),C點(diǎn)坐標(biāo)為:(6,6);
(2)所畫圖形如下所示,其中△A1B1C1即為所求,根據(jù)平移規(guī)律:左平移7個單位,可知M1的坐標(biāo)(a-7,b);
(3)所畫圖形如下所示,其中△A2B2C2即為所求,點(diǎn)A2的坐標(biāo)為(1,4)或(-1,-4).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)P的坐標(biāo)為(0,4),直線y=x-3與x軸、y軸分別交于點(diǎn)A、B,點(diǎn)M是直線AB上的一個動點(diǎn),則PM的最小值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的直徑AB=8,C為弧AB的中點(diǎn),P為⊙O上一動點(diǎn),連接AP、CP,過C作CD⊥CP交AP于點(diǎn)D,點(diǎn)P從B運(yùn)動到C時,則點(diǎn)D運(yùn)動的路徑長為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,Rt△ABC中,∠ABC=90°,∠CAB的平分線交BC于點(diǎn)O,以O為圓心,OB長為半徑作⊙O.
(1)求證:⊙O與AC相切.
(2)若AB=6,AC=10.
①求⊙O的半徑;
②如圖②,延長AO交⊙O于點(diǎn)D,過點(diǎn)D作⊙O的切線,分別交AC、AB的延長線于E、F,試求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為4,點(diǎn)E,F分別在邊AB,AD上,且∠ECF=45°,CF的延長線交BA的延長線于點(diǎn)G,CE的延長線交DA的延長線于點(diǎn)H,連接AC,EF.,GH.
(1)填空:∠AHC ∠ACG;(填“>”或“<”或“=”)
(2)線段AC,AG,AH什么關(guān)系?請說明理由;
(3)設(shè)AE=m,
①△AGH的面積S有變化嗎?如果變化.請求出S與m的函數(shù)關(guān)系式;如果不變化,請求出定值.
②請直接寫出使△CGH是等腰三角形的m值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知四邊形ABCD的一組對邊AD、BC的延長線交于點(diǎn)E.
(1)如圖①,若∠ABC=∠ADC=90°,求證:ED·EA=EC·EB;
(2)如圖②,若∠ABC=120°,cos∠ADC=,CD=5,AB=12,△CDE的面積為6,求四邊形ABCD的面積;
(3)如圖③,另一組對邊AB、DC的延長線相交于點(diǎn)F.若cos∠ABC=cos∠ADC=,CD=5,CF=ED=n,直接寫出AD的長(用含n的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰直角△ABC中,AB=BC,∠ABC=90°,BD⊥AC于D,點(diǎn)M在AD上,連接BM,過點(diǎn)C作CN⊥BM于點(diǎn)E,交AB于N,交BD于F,連接DE,AE.
(1)若∠BCN=30°,EN=2,求AN的長;
(2)若DE⊥AE于E,DG⊥DE交CN于G,求證:CE=AE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:Rt△ABC中,∠C=90°,AC=BC=2,將一塊三角尺的直角頂點(diǎn)與斜邊AB的中點(diǎn)M重合,當(dāng)三角尺繞著點(diǎn)M旋轉(zhuǎn)時,兩直角邊始終保持分別與邊BC、AC交于D,E兩點(diǎn)(D、E不與B、A重合).
(1)求證:MD=ME;
(2)求四邊形MDCE的面積:
(3)若只將原題目中的“AC=BC=2”改為“BC=a,AC=b,(a≠b)”其它都不變,請你探究:MD和ME還相等嗎?如果相等,請證明;如果不相等,請求出MD∶ME的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若點(diǎn)A(3,4)是反比例函數(shù)圖象上一點(diǎn),則下列說法正確的是( 。
A. 圖象分別位于二、四象限B. 點(diǎn)(2,﹣6)在函數(shù)圖象上
C. 當(dāng)x<0時,y隨x的增大而減小D. 當(dāng)y≤4時,x≥3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com