【題目】如圖,四邊形ABCD的頂點(diǎn)在O上,BDO的直徑,延長(zhǎng)CD、BA交于點(diǎn)E,連接ACBD交于點(diǎn)F,作AHCE,垂足為點(diǎn)H,已知∠ADE=∠ACB

1)求證:AHO的切線;

2)若OB4,AC6,求sinACB的值;

3)若,求證:CDDH

【答案】(1)證明見解析;(2);(3)證明見解析.

【解析】

1)連接OA,證明△DAB≌△DAE,得到ABAE,得到OA是△BDE的中位線,根據(jù)三角形中位線定理、切線的判定定理證明;

2)利用正弦的定義計(jì)算;

3)證明△CDF∽△AOF,根據(jù)相似三角形的性質(zhì)得到CDCE,根據(jù)等腰三角形的性質(zhì)證明.

1)證明:連接OA

由圓周角定理得,∠ACB=∠ADB,

∵∠ADE=∠ACB,

∴∠ADE=∠ADB,

BD是直徑,

∴∠DAB=∠DAE90°,

DABDAE中,

,

∴△DAB≌△DAE,

ABAE,又∵OBOD,

OADE,又∵AHDE,

OAAH,

AH是⊙O的切線;

2)解:由(1)知,∠E=∠DBE,∠DBE=∠ACD,

∴∠E=∠ACD

AEACAB6

RtABD中,AB6,BD8,∠ADE=∠ACB,

sinADB,即sinACB;

3)證明:由(2)知,OABDE的中位線,

OADE,OADE

∴△CDF∽△AOF,

,

CDOADE,即CDCE

ACAE,AHCE,

CHHECE,

CDCH,

CDDH

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ABAC,以AC為直徑做⊙OBC于點(diǎn)D,過點(diǎn)D作⊙O的切線,交AB于點(diǎn)E,交CA的延長(zhǎng)線于點(diǎn)F

1)求證:FEAB;

2)填空:當(dāng)EF4,時(shí),則DE的長(zhǎng)為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某廠為新型號(hào)電視機(jī)上市舉辦促銷活動(dòng),顧客每買一臺(tái)該型號(hào)電視機(jī),可獲得一次抽獎(jiǎng)機(jī)會(huì),該廠擬按10%設(shè)大獎(jiǎng),其余90%為小獎(jiǎng).

廠家設(shè)計(jì)的抽獎(jiǎng)方案是:在一個(gè)不透明的盒子中,放入10個(gè)黃球和90個(gè)白球,這些球除顏色外都相同,攪勻后從中任意摸出1個(gè)球,摸到黃球的顧客獲得大獎(jiǎng),摸到白球的顧客獲得小獎(jiǎng).

1)廠家請(qǐng)教了一位數(shù)學(xué)老師,他設(shè)計(jì)的抽獎(jiǎng)方案是:在一個(gè)不透明的盒子中,放入2個(gè)黃球和3個(gè)白球,這些球除顏色外都相同,攪勻后從中任意摸出2個(gè)球,摸到的2個(gè)球都是黃球的顧客獲得大獎(jiǎng),其余的顧客獲得小獎(jiǎng).該抽獎(jiǎng)方案符合廠家的設(shè)獎(jiǎng)要求嗎?請(qǐng)說明理由;

2)下圖是一個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤,請(qǐng)你將轉(zhuǎn)盤分為2個(gè)扇形區(qū)域,分別涂上黃、白兩種顏色,并設(shè)計(jì)抽獎(jiǎng)方案,使其符合廠家的設(shè)獎(jiǎng)要求.(友情提醒:1.轉(zhuǎn)盤上用文字注明顏色和扇形的圓心角的度數(shù),2、結(jié)合轉(zhuǎn)盤簡(jiǎn)述獲獎(jiǎng)方式,不需說明理由.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為緩解交通壓力,市郊某地正在修建地鐵站,擬同步修建地下停車庫.如圖是停車庫坡道入口的設(shè)計(jì)圖,其中MN是水平線,MNAD,ADDE,CFAB,垂足分別為D,F(xiàn),坡道AB的坡度=1:3,AD=9米,點(diǎn)CDE上,CD=0.5米,CD是限高標(biāo)志牌的高度(標(biāo)志牌上寫有:限高   米).如果進(jìn)入該車庫車輛的高度不能超過線段CF的長(zhǎng),則該停車庫限高多少米?(結(jié)果精確到0.1米,參考數(shù)據(jù):≈1.41,≈1.73,≈3.16)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四位同學(xué)在研究函數(shù)yax2+bx+c(a、b、c為常數(shù),且a≠0)時(shí),甲發(fā)現(xiàn)當(dāng)x1時(shí),函數(shù)有最大值;乙發(fā)現(xiàn)﹣1是方程ax2+bx+c0的一個(gè)根;丙發(fā)現(xiàn)函數(shù)的最大值為﹣1;丁發(fā)現(xiàn)當(dāng)x2時(shí),y=﹣2,已知四位中只有一位發(fā)現(xiàn)的結(jié)論時(shí)錯(cuò)誤的,則該同學(xué)是( ).

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是半圓O的直徑,點(diǎn)P是半圓上不與點(diǎn)A,B重合的動(dòng)點(diǎn),PCAB,點(diǎn)MOP中點(diǎn).

1)求證:四邊形OBCP是平行四邊形;

2)填空:

①當(dāng)∠BOP   時(shí),四邊形AOCP是菱形;

②連接BP,當(dāng)∠ABP   時(shí),PC是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在一條筆直的東西向海岸線l上有一長(zhǎng)為1.5km的碼頭MN和燈塔C,燈塔C距碼頭的東端N20km.一輪船以36km/h的速度航行,上午1000A處測(cè)得燈塔C位于輪船的北偏西30°方向,上午1040B處測(cè)得燈塔C位于輪船的北偏東60°方向,且與燈塔C相距12km.

(1)若輪船照此速度與航向航向,何時(shí)到達(dá)海岸線?

(2)若輪船不改變航向,該輪船能否停靠在碼頭?請(qǐng)說明理由(參考數(shù)據(jù): ≈1.4 ≈1.7)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,ABC的頂點(diǎn)坐標(biāo)分別為A(﹣1,1),B0,﹣2),C1,0),點(diǎn)P0,2)繞點(diǎn)A旋轉(zhuǎn)180°得到點(diǎn)P1,點(diǎn)P1繞點(diǎn)B旋轉(zhuǎn)180°得到點(diǎn)P2,點(diǎn)P2繞點(diǎn)C旋轉(zhuǎn)180°得到點(diǎn)P3,點(diǎn)P3繞點(diǎn)A旋轉(zhuǎn)180°得到點(diǎn)P4,,按此作法進(jìn)行下去,則點(diǎn)P2019的坐標(biāo)為(

A.-2,0B.C.2-4D.-2,-2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC,且∠ACB90°.

1)請(qǐng)用直尺和圓規(guī)按要求作圖(保留作圖痕跡,不寫作法和證明):

以點(diǎn)A為圓心,BC邊的長(zhǎng)為半徑作A;

以點(diǎn)B為頂點(diǎn),在AB邊的下方作∠ABD=∠BAC

2)請(qǐng)判斷直線BDA的位置關(guān)系,并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案