(2010•東營模擬)某商店經(jīng)銷一種銷售成本為每千克40元的水產品.根據(jù)市場分析,若按每千克50元銷售,一個月能銷售500千克;銷售單價每漲1元,月銷售量就減少10千克.針對這種水產品的銷售情況,請解答以下問題:
(1)當銷售單價定為每千克55元時,計算月銷售量和月銷售利潤;
(2)設銷售單價為每千克x元,月銷售利潤為y元,求y與x之間的函數(shù)關系式;
(3)當銷售單價定為每千克多少元時,月銷售利潤最大,最大利潤是多少?
【答案】分析:(1)根據(jù)“銷售單價每漲1元,月銷售量就減少10千克”,可知:月銷售量=500-(銷售單價-50)×10.由此可得出售價為55元/千克時的月銷售量,然后根據(jù)利潤=每千克的利潤×銷售的數(shù)量來求出月銷售利潤;
(2)方法同(1)只不過將55元換成了x元,求的月銷售利潤變成了y;
(3)得出(2)的函數(shù)關系式后根據(jù)函數(shù)的性質即可得出函數(shù)的最值以及相應的自變量的值.
解答:解:(1)∵當銷售單價定為每千克55元時,則銷售單價每漲(55-50)元,少銷售量是(55-40)×10千克,
∴月銷售量為:500-(55-50)×10=450(千克),
所以月銷售利潤為:(55-40)×450=6750元;
(2)當銷售單價定為每千克x元時,月銷售量為:[500-(x-50)×10]千克.
每千克的銷售利潤是:(x-40)元,
所以月銷售利潤為:y=(x-40)[500-(x-50)×10]=(x-40)(1000-10x)=-10x2+1400x-40000,
∴y與x的函數(shù)解析式為:y=-10x2+1400x-40000;
(3)由(2)的函數(shù)可知:y=-10(x-70)2+9000
因此:當x=70時,ymax=9000元,
即:當售價是70元時,利潤最大為9000元.
點評:本題主要考查了二次函數(shù)的應用,能正確表示出月銷售量是解題的關鍵.求二次函數(shù)的最大(。┲涤腥N方法,第一種可由圖象直接得出,第二種是配方法,第三種是公式法,常用的是后兩種方法.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2010年江蘇省宿遷市實驗學校中考數(shù)學三模試卷(解析版) 題型:解答題

(2010•東營模擬)某商店經(jīng)銷一種銷售成本為每千克40元的水產品.根據(jù)市場分析,若按每千克50元銷售,一個月能銷售500千克;銷售單價每漲1元,月銷售量就減少10千克.針對這種水產品的銷售情況,請解答以下問題:
(1)當銷售單價定為每千克55元時,計算月銷售量和月銷售利潤;
(2)設銷售單價為每千克x元,月銷售利潤為y元,求y與x之間的函數(shù)關系式;
(3)當銷售單價定為每千克多少元時,月銷售利潤最大,最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源:2010年山東省東營市中考模擬考試五校聯(lián)考數(shù)學試卷(解析版) 題型:解答題

(2010•東營模擬)某商店經(jīng)銷一種銷售成本為每千克40元的水產品.根據(jù)市場分析,若按每千克50元銷售,一個月能銷售500千克;銷售單價每漲1元,月銷售量就減少10千克.針對這種水產品的銷售情況,請解答以下問題:
(1)當銷售單價定為每千克55元時,計算月銷售量和月銷售利潤;
(2)設銷售單價為每千克x元,月銷售利潤為y元,求y與x之間的函數(shù)關系式;
(3)當銷售單價定為每千克多少元時,月銷售利潤最大,最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源:2010年山東省東營市中考模擬考試五校聯(lián)考數(shù)學試卷(解析版) 題型:選擇題

(2010•東營模擬)把拋物線y=-2x2向右平移1個單位得到的拋物線解析式是( )
A.y=-2(x+1)2
B.y=-2(x-1)2
C.y=-2x2+1
D.y=-2x2-1=12

查看答案和解析>>

科目:初中數(shù)學 來源:2009年浙江省杭州市蕭山區(qū)中考模擬數(shù)學試卷(益農鎮(zhèn)中 張向東)(解析版) 題型:選擇題

(2010•東營模擬)甲、乙、丙、丁四位同學參加校田徑運動會4×100米接力跑比賽,如果任意安排四位同學的跑步順序,那么恰好由甲將接力棒交給乙的概率是( )
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案