在平面直角坐標(biāo)系中,直線AB與x軸,y軸相交于A,B兩點(diǎn),直線AB的函數(shù)表達(dá)式為 y=-
3
4
x-6
,圓M經(jīng)過原點(diǎn)O,A,B三點(diǎn).
(1)求出A,B的坐標(biāo);
(2)若有一拋物線的對稱軸平行于y軸且經(jīng)過點(diǎn)M,頂點(diǎn)C在⊙M上且拋物線經(jīng)過點(diǎn)B,求此拋物線的函數(shù)解析式;
(3)如圖,設(shè)(2)中求得的開口向下的拋物線交x軸于D、E兩點(diǎn),拋物線上是否存在點(diǎn)P,使得S△PDE=
1
10
S△ABC
?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
分析:(1)根據(jù)一次函數(shù)與坐標(biāo)軸交點(diǎn)坐標(biāo)求法得出答案即可;
(2)利用頂點(diǎn)式由B點(diǎn)坐標(biāo)求出二次函數(shù)解析式即可;
(3)首先求出△ABC的面積,進(jìn)而求出D,E坐標(biāo),進(jìn)而求出△PDE的高,即可求出P點(diǎn)坐標(biāo).
解答:解:(1)令y=0,得0=-
3
4
x-6

x=-8,
令x=0,y=-6,
∴A(-8,0)B(0,-6);

(2)∵CM⊥OA,
∴CM平分OA,
∵M(jìn)為AB中點(diǎn),
∴NM為△AOB中位線,
NM=
1
2
OB=3,
∴AM=5,
當(dāng)拋物線開口向下時,頂點(diǎn)為C(-4,2)的拋物線解析式為:y=-
1
2
(x+4)2+2
,
當(dāng)拋物線開口向上時,頂點(diǎn)為C(-4,-8)的拋物線解析式為:y=
1
8
(x+4)2-8
;

(3)∵CM=5,AD=4,DO=4,
∴S△ABC=20,
S△PDE=
1
10
×20=2
,
令y=0,得0=-
1
2
(x+4)2+2
,
D(-6,0)E(-2,0),DE=4,
 
1
2
×h×4=2
,
h=1,
當(dāng)y=1時,
1=-
1
2
(x+4)2+2,
解得:x1=-4+
2
,x2=-4-
2

∴P1(-4+
2
,1),P2(-4-
2
,1);
 當(dāng)y=-1時,
 -1=-
1
2
(x+4)2+2
,
解得:x=-4±
6
,
∴P3(-4+
6
,-1),P4(-4-
6
,-1).
故拋物線上存在點(diǎn)P,使得S△PDE=
1
10
S△ABC
,此時,點(diǎn)P的坐標(biāo)為:P1(-4+
2
,1),P2(-4-
2
,1),P3(-4+
6
,-1),P4(-4-
6
,-1).
點(diǎn)評:此題主要考查了二次函數(shù)的綜合應(yīng)用以及頂點(diǎn)式求二次函數(shù)解析式和一元二次方程的解法,此題綜合性較強(qiáng),用到分類討論思想,注意不要漏解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

28、在平面直角坐標(biāo)系中,點(diǎn)P到x軸的距離為8,到y(tǒng)軸的距離為6,且點(diǎn)P在第二象限,則點(diǎn)P坐標(biāo)為
(-6,8)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

10、在平面直角坐標(biāo)系中,點(diǎn)P1(a,-3)與點(diǎn)P2(4,b)關(guān)于y軸對稱,則a+b=
-7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,有A(2,3)、B(3,2)兩點(diǎn).
(1)請?jiān)偬砑右稽c(diǎn)C,求出圖象經(jīng)過A、B、C三點(diǎn)的函數(shù)關(guān)系式.
(2)反思第(1)小問,考慮有沒有更簡捷的解題策略?請說出你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系中,開口向下的拋物線與x軸交于A、B兩點(diǎn),D是拋物線的頂點(diǎn),O為精英家教網(wǎng)坐標(biāo)原點(diǎn).A、B兩點(diǎn)的橫坐標(biāo)分別是方程x2-4x-12=0的兩根,且cos∠DAB=
2
2

(1)求拋物線的函數(shù)解析式;
(2)作AC⊥AD,AC交拋物線于點(diǎn)C,求點(diǎn)C的坐標(biāo)及直線AC的函數(shù)解析式;
(3)在(2)的條件下,在x軸上方的拋物線上是否存在一點(diǎn)P,使△APC的面積最大?如果存在,請求出點(diǎn)P的坐標(biāo)和△APC的最大面積;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

18、在平面直角坐標(biāo)系中,把一個圖形先繞著原點(diǎn)順時針旋轉(zhuǎn)的角度為θ,再以原點(diǎn)為位似中心,相似比為k得到一個新的圖形,我們把這個過程記為【θ,k】變換.例如,把圖中的△ABC先繞著原點(diǎn)O順時針旋轉(zhuǎn)的角度為90°,再以原點(diǎn)為位似中心,相似比為2得到一個新的圖形△A1B1C1,可以把這個過程記為【90°,2】變換.
(1)在圖中畫出所有符合要求的△A1B1C1;
(2)若△OMN的頂點(diǎn)坐標(biāo)分別為O(0,0)、M(2,4)、N(6,2),把△OMN經(jīng)過【θ,k】變換后得到△O′M′N′,若點(diǎn)M的對應(yīng)點(diǎn)M′的坐標(biāo)為(-1,-2),則θ=
0°(或360°的整數(shù)倍)
,k=
2

查看答案和解析>>

同步練習(xí)冊答案