【題目】下列各組條件中,不能判斷△ABC≌△DEF的是(

A. ∠A=∠D,AB=DE,∠B=∠E B. AB=DE,∠A=∠D,BC=EF

C. AB=DE,BC=EF,AC=DF D. ∠B=∠E=90°,AB=DE,AC=DF

【答案】B

【解析】

根據(jù)全等三角形的判定定理有SAS,ASA,AAS,SSS,直角三角形全等還有HL,根據(jù)以上知識點逐個判斷即可.

如圖,

A、符合全等三角形的判定定理ASA,即兩三角形全等,故本選項錯誤;

B、不符合全等三角形的判定定理,即兩三角形不全等,故本選項正確;

C、符合全等三角形的判定定理SSS,即兩三角形全等,故本選項錯誤;

D、符合全等三角形的判定定理HL,即兩三角形全等,故本選項錯誤;

故選B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC和△DEC都是等腰直角三角形,C為它們的公共直角頂點,D、E分別在BC、AC邊上.

(1)如圖1,F(xiàn)是線段AD上的一點,連接CF,若AF=CF;

①求證:點FAD的中點;

②判斷BECF的數(shù)量關(guān)系和位置關(guān)系,并說明理由;

(2)如圖2,把△DEC繞點C順時針旋轉(zhuǎn)α角(0<α<90°),點FAD的中點,其他條件不變,判斷BECF的關(guān)系是否不變?若不變,請說明理由;若要變,請求出相應(yīng)的正確結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中.AB=ACBAC=90EAC邊上的一點,延長BAD,使AD=AE,連接DE,CD.

(l)圖中是否存在兩個三角形全等?如果存在請寫出哪兩個三角形全等,并且證明;如果不存在,請說明理由;

(2)若∠CBE=30,求∠ADC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,有若干個橫縱坐標分別為整數(shù)的點,其順序為(1,0),(2,0),(2,1),(1,1),(1,2),(2,2),…,根據(jù)這個規(guī)律,第2 018個點的坐標為( )

A. (45,9) B. (45,11) C. (45,7) D. (46,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列說法: ①2a+b=0;
②當(dāng)﹣1≤x≤3時,y<0;
③若(x1 , y1)、(x2 , y2)在函數(shù)圖象上,當(dāng)x1<x2時,y1<y2
④9a+3b+c=0
其中正確的是(

A.①②④
B.①②③
C.①④
D.③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰三角形ABC中,AB=AC,D、E都在BC上,要使△ABD≌△ACE,需要添加一個條件,某學(xué)習(xí)小組在討論這個條件時給出了如下幾種方案: ①AD=AE;②BD=CE;③BE=CD;④∠BAD=∠CAE,其中可行的有(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點PAC上,點QAB上,BE平分∠ABP,交ACE,CF平分∠ACQ,交ABF,BE、CF相交于G,CQ、BP相交于D,若∠BDC=140°,∠BGC=110°,求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,BD為△ABC的角平分線,且BD=BC,E為BD延長線上的一點,BE=BA,過E作EF⊥AB,F(xiàn)為垂足,下列結(jié)論:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=EF=EC;④BA+BC=2BF,其中正確的結(jié)論有________(填序號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】坐標平面內(nèi)有4個點A(0,2),B(-2,0),C(1,-1),D(3,1).

(1)建立坐標系,描出這4個點;

(2)順次連接A,B,C,D,組成四邊形ABCD,求四邊形ABCD的面積.

(3)線段AB,CD有什么關(guān)系?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案