【題目】如圖,在平面直角坐標系xOy中,A(4,0),B(0,3),C(4,3),I是△ABC的內(nèi)心,將△ABC繞原點逆時針旋轉(zhuǎn)90°后,I的對應點I′的坐標為_____

【答案】(﹣2,3).

【解析】

直接利用直角三角形的性質(zhì)得出其內(nèi)切圓半徑,進而得出I點坐標,再利用旋轉(zhuǎn)的性質(zhì)得出對應點坐標.

過點作IFAC于點F,IEOA于點E,

A(4,0),B(0,3),C(4,3),

BC=4,AC=3,

AB=5,

I是△ABC的內(nèi)心,

I到△ABC各邊距離相等,等于其內(nèi)切圓的半徑,

IF=1,故IBC的距離也為1,

AE=1,

IE=3-1=2,

OE=4-1=3,

I(3,2),

∵△ABC繞原點逆時針旋轉(zhuǎn)90°,

I的對應點I'的坐標為:(-2,3).

故答案為:(-2,3).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AC是O的直徑,PA切O于點A,點B是O上的一點,且∠BAC=30°,∠APB=60°.

(1)求證:PB是O的切線;

(2)O的半徑為2,求弦AB及PA,PB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖某野生動物園分 A、B 兩個園區(qū).如圖是該動物園的通路示意圖,小明進入入口后,任選一條通道.

(1)他進 A 園區(qū)或 B 園區(qū)的可能性哪個大?請說明理由(利用樹狀圖或列表來求解);

(2)求小明從中間通道進入 A 園區(qū)的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】根據(jù)衢州市統(tǒng)計局發(fā)布的統(tǒng)計數(shù)據(jù)顯示,衢州市近5年國民生產(chǎn)總值數(shù)據(jù)如圖1所示,2016年國民生產(chǎn)總值中第一產(chǎn)業(yè)、第二產(chǎn)業(yè)、第三產(chǎn)業(yè)所占比例如圖2所示。

請根據(jù)圖中信息,解答下列問題:

(1)求2016年第一產(chǎn)業(yè)生產(chǎn)總值(精確到1億元);

(2)2016年比2015年的國民生產(chǎn)總值增加了百分之幾(精確到1%)?

(3)若要使2018年的國民生產(chǎn)總值達到1573億元,求2016年至2018年我市國民生產(chǎn)總值平均年增長率(精確到1%)。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】,是關(guān)于的一元二次方程的兩個根,則方程的兩個根,和系數(shù),有如下關(guān)系:,把它們稱為一元二次方程根與系數(shù)關(guān)系定理,請利用此定理解答一下問題:

已知是一元二次方程的兩個實數(shù)根.

(1)是否存在實數(shù),使成立?若存在,求出的值,若不存在,請你說明理由;

(2)若,求的值和此時方程的兩根.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線y=x2+bx+c與x軸交于A(1,0),B(m,0),與y軸交于C.

(1)若m=﹣3,求拋物線的解析式,并寫出拋物線的對稱軸;

(2)如圖1,在(1)的條件下,設拋物線的對稱軸交x軸于D,在對稱軸左側(cè)的拋物線上有一點E,使SACE= SACD,求點E的坐標;

(3)如圖2,設F(﹣1,﹣4),F(xiàn)Gy于G,在線段OG上是否存在點P,使OBP=FPG?若存在,求m的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(10分)已知二次函數(shù)

(1)如果二次函數(shù)的圖象與x軸有兩個交點,求m的取值范圍;

(2)如圖,二次函數(shù)的圖象過點A(3,0),與y軸交于點B,直線AB與這個二次函數(shù)圖象的對稱軸交于點P,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,在等腰ABC中,ABAC,ADBC于點D,以AC為邊作等邊ACE,直線BE交直線AD于點F.如圖,60°≤BAC≤120°,ACFABC在直線AC的同側(cè).

(1)①補全圖形;

②∠EAF+CEF   

(2)猜想線段FA,FBFE的數(shù)量關(guān)系,并證明你的結(jié)論;

(3)若BC=2,則AF的最大值為   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,O為正方形對角線的交點,BE平分DBC,交DC于點E,延長BC到點F,使CF=CE,連結(jié)DF,交BE的延長線于點G,連結(jié)OG

(1)求證:BCE≌△DCF

(2)判斷OG與BF有什么關(guān)系,證明你的結(jié)論

(3)若DF2=8-4,求正方形ABCD的面積?

查看答案和解析>>

同步練習冊答案