【題目】如圖,D、C、F、B四點在一條直線上,AB=DE,AC⊥BD,EF⊥BD,垂足分別為點C、點F,CD=BF.
求證:(1)△ABC≌△EDF;
(2)AB∥DE.
【答案】(1)證明見解析;(2)證明見解析.
【解析】
(1)先根據AC⊥BD,EF⊥BD,可得△ABC和△EDF為直角三角形,由CD=BF,
可得CF+BF=CF+CD,即BC=DF,在Rt△ABC和Rt△EDF中,由可判定Rt△ABC≌Rt△EDF(HL),
(2)由(1)可知△ABC≌△EDF,根據全等三角形的性質可得:∠B=∠D,根據平行線的判定定理可得:AB∥DE.
(1)∵AC⊥BD,EF⊥BD,
∴△ABC和△EDF為直角三角形,
∵CD=BF,
∴CF+BF=CF+CD,即BC=DF,
在Rt△ABC和Rt△EDF中,
,
∴Rt△ABC≌Rt△EDF(HL),
(2)由(1)可知△ABC≌△EDF,
∴∠B=∠D,
∴AB∥DE.
科目:初中數學 來源: 題型:
【題目】一輛汽車行駛時的耗油量為0.1升/千米,如圖是油箱剩余油量(升)關于加滿油后已行駛的路程(千米)的函數圖象.
(1)根據圖象,直接寫出汽車行駛400千米時,油箱內的剩余油量,并計算加滿油時油箱的油量;
(2)求關于的函數關系式,并計算該汽車在剩余油量5升時,已行駛的路程.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,矩形ABCD的兩條邊在坐標軸上,點D與坐標原點O重合,且AD=8,AB=6.如圖2,矩形ABCD沿OB方向以每秒1個單位長度的速度運動,同時點P從A點出發(fā)也以每秒1個單位長度的速度沿矩形ABCD的邊AB經過點B向點C運動,當點P到達點C時,矩形ABCD和點P同時停止運動,設點P的運動時間為t秒.
(1)當t=5時,請直接寫出點D,點P的坐標;
(2)當點P在線段AB或線段BC上運動時,求出△PBD的面積S關于t的函數關系式,并寫出相應t的取值范圍;
(3)點P在線段AB或線段BC上運動時,作PE⊥x軸,垂足為點E,當△PEO與△BCD相似時,求出相應的t值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】列方程或不等式組解應用題:
為進一步改善某市旅游景區(qū)公共服務設施,市政府預算用資金30萬元在二百余家A級景區(qū)配備兩種輪椅800臺,其中普通輪椅每臺350元,輕便型輪椅每臺450元.
(1) 如果預算資金恰好全部用完,那么能購買兩種輪椅各多少臺?
(2) 由于獲得了不超過5萬元的社會捐助,那么輕便型輪椅最多可以買多少臺?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】十八屆五中全會出臺了全面實施一對夫婦可生育兩個孩子的政策,這是黨中央站在中華民族長遠發(fā)展的戰(zhàn)略高度作出的促進人口長期均衡發(fā)展的重大舉措.二孩政策出臺后,某家庭積極響應政府號召,準備生育兩個孩子(生男生女機會均等,且與順序有關).
(1)該家庭生育兩胎,假設每胎都生育一個小孩,求這兩個小孩恰好是1男1女的概率;
(2)該家庭生育兩胎,假如第一胎生育一個小孩,其第二胎生育一對雙胞胎,請你用畫樹狀圖或列表的方法,求這三個小孩中至少有一個女孩的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,給出下列四組條件:
①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E.BC=EF;③∠B=∠E,BC=EF,∠C=∠F;④AB=DE,AC=DF,∠B=∠E. 其中,能使△ABC≌△DEF 的條件共有( )
A. 1 組B. 2 組C. 3 組D. 4 組
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,所有正方形的中心都在原點,且各邊也都與x軸或y軸平行,從內向外,它們的邊長依次為2,4,6,8,…頂點依次用A1、A2、A3、A4表示,則頂點A2020的坐標為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖, 是⊙ 的直徑, 、 為⊙ 上位于 異側的兩點,連接 并延長至點 ,使得 ,連接 交⊙ 于點 ,連接 、 、 .
(1)證明: ;
(2)若 ,求 的度數;
(3)設 交 于點 ,若 是 的中點,求 的值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com