如圖,圓內(nèi)接四邊形ABCD,AB是⊙O的直徑,OD⊥BC于E.
(1)求證:∠BCD=∠CBD;
(2)若BE=4,AC=6,求DE.
分析:(1)根據(jù)OD⊥BC于E可知
BD
=
CD
,所以BD=CD,故可得出結(jié)論;
(2)先根據(jù)圓周角定理得出∠ACB=90°,再OD⊥BC于E可知OD∥AC,由于點O是AB的中點,所以OE是△ABC的中位線,故OE=
1
2
AC,在Rt△OBE中根據(jù)勾股定理可求出OB的長,故可得出DE的長,進而得出結(jié)論.
解答:解:(1)∵OD⊥BC于E,
BD
=
CD
,
∴BD=CD,
∴∠BCD=∠CBD;

(2)∵AB是⊙O的直徑,
∴∠ACB=90°,
∵OD⊥BC于E,
∴OD∥AC,
∵點O是AB的中點,
∴OE是△ABC的中位線,
∴OE=
1
2
AC=
1
2
×6=3,
在Rt△OBE中,
∵BE=4,OE=3,
∴OB=
BE2+OE2
=
42+32
=5,即OD=OB=5,
∴DE=OD-OE=5-3=2.
點評:本題考查的是垂徑定理,熟知平分弦的直徑平分這條弦,并且平分弦所對的兩條弧是解答此題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

11、如圖,圓內(nèi)接四邊形ABCD的對角線AC,BD把四邊形的四個內(nèi)角分成八個角,這八個角中相等的角的對數(shù)至少有(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

15、如圖,圓內(nèi)接四邊形ABCD的BA,CD的延長線交于P,AC,BD交于E,則圖中相似三角形有(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

2、已知:如圖,圓內(nèi)接四邊形ABCD中,∠BAD=65°,則∠BCD=
115
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:如圖,圓內(nèi)接四邊形ABCD,過C點作對角線BD的平行線交AD的延長線于E點.
求證:DE•AB=BC•CD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,圓內(nèi)接四邊形ABCD,AB=AD,∠BAD=60°,AC=2,則四邊形ABCD的面積為( 。
A、4
B、2
C、
2
D、
3

查看答案和解析>>

同步練習冊答案