如圖,在平面直角坐標(biāo)系xOy中,矩形OABC的邊OA、OC分別在y軸和x軸的正半軸上,且長分別為m、4m(m>0),D為邊AB的中點(diǎn),一拋物線l經(jīng)過點(diǎn)A、D及點(diǎn)M(﹣1,﹣1﹣m).

(1)求拋物線l的解析式(用含m的式子表示);

(2)把△OAD沿直線OD折疊后點(diǎn)A落在點(diǎn)A′處,連接OA′并延長與線段BC的延長線交于點(diǎn)E,若拋物線l與線段CE相交,求實(shí)數(shù)m的取值范圍;

(3)在滿足(2)的條件下,求出拋物線l頂點(diǎn)P到達(dá)最高位置時(shí)的坐標(biāo).

 

【答案】

解:(1)設(shè)拋物線l的解析式為,

將A(0,m),D(2m,m),M(﹣1,﹣1﹣m)三點(diǎn)的坐標(biāo)代入,得

,解得

∴拋物線l的解析式為。

 (2)設(shè)AD與x軸交于點(diǎn)M,過點(diǎn)A′作A′N⊥x軸于點(diǎn)N,

∵把△OAD沿直線OD折疊后點(diǎn)A落在點(diǎn)A′處,

∴△OAD≌△OA′D,OA=OA′=m,AD=A′D=2m,∠OAD=∠OA′D=90°,∠ADO=∠A′DO。

∵矩形OABC中,AD∥OC,∴∠ADO=∠DOM。

∴∠A′DO=∠DOM!郉M=OM。

設(shè)DM=OM=x,則A′M=2m﹣x,

在Rt△OA′M中,∵OA′2+A′M2=OM2

,解得。

,∴

。

∴A′點(diǎn)坐標(biāo)為()。

易求直線OA′的解析式為,

當(dāng)x=4m時(shí),,∴E點(diǎn)坐標(biāo)為(4m,)。

當(dāng)x=4m時(shí),,

∴拋物線l與直線CE的交點(diǎn)為(4m,)。

∵拋物線l與線段CE相交,∴

∵m>0,∴,解得

(3)∵,

∴當(dāng)x=m時(shí),y有最大值。

又∵

∴當(dāng)時(shí),隨m的增大而增大。

∴當(dāng)m=時(shí),頂點(diǎn)P到達(dá)最高位置,。

∴此時(shí)拋物線l頂點(diǎn)P到達(dá)最高位置時(shí)的坐標(biāo)為(,

【解析】

試題分析:(1)設(shè)拋物線l的解析式為,將A、D、M三點(diǎn)的坐標(biāo)代入,運(yùn)用待定系數(shù)法即可求解。

(2)設(shè)AD與x軸交于點(diǎn)M,過點(diǎn)A′作A′N⊥x軸于點(diǎn)N.根據(jù)軸對(duì)稱及平行線的性質(zhì)得出DM=OM=x,則A′M=2m﹣x,OA′=m,在Rt△OA′M中運(yùn)用勾股定理求出x,得出A′點(diǎn)坐標(biāo),運(yùn)用待定系數(shù)法得到直線OA′的解析式,確定E點(diǎn)坐標(biāo)(4m,﹣3m),根據(jù)拋物線l與線段CE相交,列出關(guān)于m的不等式組,求出解集即可。

(3)根據(jù)二次函數(shù)的性質(zhì),結(jié)合(2)中求出的實(shí)數(shù)m的取值范圍,即可求解。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個(gè)點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動(dòng),路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時(shí),求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時(shí),請(qǐng)寫出點(diǎn)P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊(cè)答案