【題目】如圖,在矩形ABCD中,AB=10,BC=8,以CD為直徑作⊙O.將矩形ABCD繞點(diǎn)C旋轉(zhuǎn),使所得矩形A′B′CD′的邊A′B′與⊙O相切,切點(diǎn)為E,邊CD′與⊙O相交于點(diǎn)F,則CF的長(zhǎng)為_____

【答案】8

【解析】

連結(jié)EO并延長(zhǎng)交CF于點(diǎn)H,證明四邊形E B′CH是矩形,在Rt△OCH中,根據(jù)勾股定理得CH,代入數(shù)值求出CF=2CH =8.

連結(jié)EO并延長(zhǎng)交CF于點(diǎn)H,

∵矩形ABCD繞點(diǎn)C旋轉(zhuǎn)得到矩形A′B′CD′,

∴∠B′=∠B′CD′=90°,A′B′∥CD′,BC=B′C=8

∵A′B′⊙O與點(diǎn)E,

∴OE⊥A′B′,

四邊形E B′CH是矩形,

∴EH= B′C=8,OH⊥CF

∵AB=10,

∴OE=OC =AB=5,

∴OH=3,

Rt△OCH中,根據(jù)勾股定理得,

∴CF=2CH =8.

故答案為:8.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲和乙兩位同學(xué)想測(cè)量一下廣場(chǎng)中央的照明燈P的高度,如圖,當(dāng)甲站在A處時(shí),乙測(cè)得甲的影子長(zhǎng)AD正好與他的身高AM相等,接著甲沿AC方向繼續(xù)向前走,走到點(diǎn)B處時(shí),甲的影子剛好是線段AB,此時(shí)測(cè)得AB的長(zhǎng)為1.2m.已知甲直立時(shí)的身高為1.8m,求照明燈的高CP的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知正方形ABCD,點(diǎn)A2,0),B0,4),那么點(diǎn)C的坐標(biāo)是___

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為市體校選拔一名籃球隊(duì)員教練對(duì)王亮和李剛兩名同學(xué)進(jìn)行53分投籃測(cè)試,每人每次投10個(gè)球,下圖記錄的是這兩名同學(xué)5次投籃中所投中的個(gè)數(shù).

請(qǐng)你根據(jù)圖中的數(shù)據(jù),填寫(xiě)下表

姓名

平均分

眾數(shù)

極差

方差

王亮

7

7

______

李剛

7

______

5

______

你認(rèn)為誰(shuí)的成績(jī)比較穩(wěn)定,為什么?

若你是教練,你打算選誰(shuí)參賽?請(qǐng)利用以上數(shù)據(jù)或圖中信息簡(jiǎn)要說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有兩張完全重合的矩形紙片,小亮同學(xué)將其中一張繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°后得到矩形AMEF(如圖1),連接BD、MF,若此時(shí)他測(cè)得BD=8cm,∠ADB=30度.請(qǐng)回答下列問(wèn)題:(1)試探究線段BD與線段MF的關(guān)系,并簡(jiǎn)要說(shuō)明理由;

(2)小紅同學(xué)用剪刀將△BCD與△MEF剪去,與小亮同學(xué)繼續(xù)探究.他們將△ABD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)得△AB1D1,AD1FM于點(diǎn)K(如圖2),設(shè)旋轉(zhuǎn)角為β(0°<β<90°),當(dāng)△AFK為等腰三角形時(shí),請(qǐng)直接寫(xiě)出旋轉(zhuǎn)角β的度數(shù);

(3)若將△AFM沿AB方向平移得到△A2F2M2(如圖3),F(xiàn)2M2AD交于點(diǎn)P,A2M2BD交于點(diǎn)N,當(dāng)NP∥AB時(shí),求平移的距離是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=-x2+bx+c與x軸交于A、B兩點(diǎn),B點(diǎn)的坐標(biāo)為3,0,經(jīng)過(guò)A點(diǎn)的直線交拋物線于點(diǎn)D 2, 3.

1求拋物線的解析式和直線AD的解析式;

2過(guò)x軸上的點(diǎn)E a,0 作直線EFAD,交拋物線于點(diǎn)F,是否存在實(shí)數(shù)a,使得以A、D、E、F為頂點(diǎn)的四邊形是平行四邊形?如果存在,求出滿足條件的a;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示是一個(gè)直角三角形的苗圃,由一個(gè)正方形花壇和兩塊直角三角形的草皮組成.如果兩個(gè)直角三角形的兩條斜邊長(zhǎng)分別為4米和6米,則草皮的總面積為(  )平方米.

A. 3 B. 9 C. 12 D. 24

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】RtABC中,∠ACB=90°,AC=2BC, 將△ABC繞點(diǎn)O按逆時(shí)針?lè)较蛐D(zhuǎn)90°得到△DEF,點(diǎn)A,B,C的對(duì)應(yīng)點(diǎn)分別是點(diǎn)D,E,F.請(qǐng)僅用無(wú)刻度直尺分別在下面圖中按要求畫(huà)出相應(yīng)的點(diǎn)(保留畫(huà)圖痕跡).

1).如圖1,當(dāng)點(diǎn)OAC的中點(diǎn)時(shí),畫(huà)出BC的中點(diǎn)N

(2).如圖2, 旋轉(zhuǎn)后點(diǎn)E恰好落在點(diǎn)C,點(diǎn)F落在AC,點(diǎn)NBC的中點(diǎn),畫(huà)出旋轉(zhuǎn)中心O.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】跳跳一家外出自駕游,出發(fā)時(shí)油箱里還剩有汽油30升,已知跳跳家的汽車(chē)每百千米的平均油耗為12升,設(shè)油箱里剩下的油量為y(單位:升),汽車(chē)行駛的路程為x(單位:千米.

1)求y關(guān)于x的函數(shù)表達(dá)式;

2)若跳跳家的汽車(chē)油箱中的油量低于5升時(shí),儀表盤(pán)會(huì)亮起黃燈警報(bào). 要使郵箱中的存油量不低于5升,跳跳爸爸至多能夠行駛多少千米就要進(jìn)加油站加油?

查看答案和解析>>

同步練習(xí)冊(cè)答案