【題目】如圖,正方形,的頂點,,在坐標軸上,點在上,點,在雙曲線上,若點的橫坐標為,則直線的函數解析式為________.
【答案】
【解析】
由點B的橫坐標為2,根據圖形得到正方形OABC的邊長和點B的坐標,設出正方形ADEF的邊長為a,由點B和E在同一個雙曲線上,列出關于a的方程,求出方程的解得到a的值,進而得到點E的坐標,設出直線BE的解析式為y=kx+b,把點B和E的坐標代入即可求出k和b的值,確定出直線BE的解析式.
設正方形ADEF的邊長為a,由點B的橫坐標為2,
得到正方形OABC的邊長為2,即B坐標為(2,2),
則點E的坐標為(a+2,a)(a>0),又點B和E在同一個雙曲線上,
∴a(a+2)=4,即(a+1)2=5,解得:a=-1或a=--1(舍去),
∴點E坐標為(+1,-1),
設直線BE的函數解析式為y=kx+b,將點E和B的坐標代入得:
,解得,
∴直線BE的解析式為y=x+1+.
故答案為:y=x+1+.
科目:初中數學 來源: 題型:
【題目】田忌賽馬是一個為人熟知的故事.傳說戰(zhàn)國時期,齊王與田忌各有上、中、下三匹馬,同等級的馬中,齊王的馬比田忌的馬強.有一天,齊王要與田忌賽馬,雙方約定:比賽三局,每局各出-匹,每匹馬賽一次,贏得兩局者為勝.看樣子田忌似乎沒有什么勝的希望,但是田忌的謀士了解到主人的上、中等馬分別比齊王的中、下等馬要強.
(1)如果齊王將馬按下中上的順序出陣比賽,那么田忌的馬如何出陣才能獲勝?
(2)如果齊王將馬按下中上的順序出陣,而田忌的馬隨機出陣比賽,田忌獲勝的概率是多少?(要求寫出雙方對陣的所有情況)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】汽車油箱中的余油量(升)隨汽車行駛的時間(時)的變化而變化,與之間的關系為,其中是油箱中原有的油的升數,若這輛汽車油箱中原有油60升.
(1)用表格表示行駛1到5小時過程中這輛汽車油箱中余油量與行駛時間的關系,填寫下表:
行駛時間(時) | 1 | 2 | 3 | 4 | 5 |
余油量(升) |
(2)這輛車最多可行駛多少小時?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖(1),在Rt△ABC中,∠A=90°,AC=AB=4,D,E分別是AB,AC的中點.若等腰Rt△ADE繞點A逆時針旋轉,得到等腰Rt△AD1E1,如圖(2),設旋轉角為α(0<α≤180°),記直線BD1與CE1的交點為P.
(1)求證:BD1=CE1;(2)當∠CPD1=2∠CAD1時,求CE1的長;
(3)連接PA,△PAB面積的最大值為 .(直接填寫結果)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某陶瓷公司招工廣告稱:“本公司工人工作時間:每天工作小時,每月工作天;待遇:工人按計件付工資,每月另加生活費元,按月結算…”.該公司只生產甲、乙兩種陶瓷,工人小王記錄了如下一些數據:
甲種陶瓷 (單位:個) | 乙種陶瓷 (單位:個) | 總時間 (單位:分鐘) | 計件工資 (單位:元) |
(1)設生產每個甲種陶瓷所需的時間為分鐘,用含有的代數式表示生產每個乙種陶瓷所需的時間;
(2)設小王工人小王某月(工作天)生產甲種陶瓷個,乙種陶瓷個,
①試求與的函數關系式;(不需寫出自變量的取值范圍)
②根據市場調查,每個工人每月生產甲種陶瓷的數量不少于乙種陶瓷數量的倍,且生產每個乙種陶瓷的計件工資可提高元,甲種陶瓷計件工資也有提高的空間.若小王的工作效率不變,甲種陶瓷計件工資至少要提高多少元,小王的月工資(計件工資+福利工資月工資)才能領到元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】綜合與實踐
已知是等腰直角三角形,,,為的中點.
(1)如圖:過作,分別交、于、.求證:.
(2)如圖,若,分別與、的延長線交于點、,此時(1)中的結論還成立嗎?若成立,請說明理由,若不成立,請舉例說明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“低碳環(huán)保,你我同行”.近幾年,各大城市的公共自行車給市民出行帶來了極大的方便.圖①是公共自行車的實物圖,圖②是公共自行車的車架示意圖,點A.D、C、E在同一條直線上,CD=30cm,DF=20cm,AF=25cm,FD⊥AE于點D,座桿CE=15cm,且∠EAB=75°.
(1)求AD的長;
(2)求點E到AB的距離.(參考數據:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com