【題目】2014年湖南懷化10分)設(shè)m是不小于﹣1的實數(shù),使得關(guān)于x的方程x2+2m﹣2x+m2﹣3m+3=0有兩個不相等的實數(shù)根x 1x2

1)若,求的值;

2)求的最大值.

【答案】(1);(23.

【解析】試題(1)首先根據(jù)根的判別式求出m的取值范圍,利用根與系數(shù)的關(guān)系,求出符合條件的m的值.

(2)把利用根與系數(shù)的關(guān)系得到的關(guān)系式代入代數(shù)式,細心化簡,結(jié)合m的取值范圍求出代數(shù)式的最大值.

試題解析::∵方程有兩個不相等的實數(shù)根,

∴△=b2-4ac=4(m-2)2-4(m2-3m+3)=-4m+4>0,

∴m<1,

結(jié)合題意知:-1≤m<1.

(1)∵x1+x2=-2(m-2),x1x2=m2-3m+3,

解得:m1=,m2=(不合題意,舍去)

(2)

=-2(m-1)-m2

=-(m+1)2+3.

m=-1時,最大值為3.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知二次函數(shù)y=ax22ax3aa0)圖象與x軸交于點AB(點A在點B的左側(cè)),與y軸交于點C,頂點為D

1)求點A,B的坐標;

2)若M為對稱軸與x軸交點,且DM=2AM

求二次函數(shù)解析式;

t2xt時,二次函數(shù)有最大值5,求t值;

若直線x=4與此拋物線交于點E,將拋物線在C,E之間的部分記為圖象記為圖象P(含C,E兩點),將圖象P沿直線x=4翻折,得到圖象Q,又過點(10,﹣4)的直線y=kx+b與圖象P,圖象Q都相交,且只有兩個交點,求b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A1、A2、A3在直線yx上,點C1,C2,C3在直線y2x上,以它們?yōu)轫旤c依次構(gòu)造第一個正方形A1C1A2B1,第二個正方形A2C2A3B2,若A2的橫坐標是1,則B3的坐標是_____,第n個正方形的面積是_____

[Failed to download image : http://192.168.0.10:8086/QBM/2019/5/21/2208296361205760/2209339150704640/STEM/947823175bfc4b878475a9a15e16a258.png]

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖在平面直角坐標系中,過點A02)的直線與⊙O相切于點C,與x軸交于點B且半徑為

1)求∠BAO的度數(shù).(2)求直線AB的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,以AC為直徑作⊙O,交ABD,過點OOEAB,交BCE.

(1)求證:ED為⊙O的切線;

(2)如果⊙O的半徑為,ED=2,延長EO交⊙OF,連接DF、AF,求ADF的面積.

【答案】(1)證明見解析;(2)

【解析】試題分析:(1)首先連接OD,由OEAB,根據(jù)平行線與等腰三角形的性質(zhì),易證得 即可得,則可證得的切線;
(2)連接CD,根據(jù)直徑所對的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OEAB,證得根據(jù)相似三角形的對應(yīng)邊成比例,即可求得的長,然后利用三角函數(shù)的知識,求得的長,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

試題解析:(1)證明:連接OD,

OEAB

∴∠COE=CAD,EOD=ODA,

OA=OD,

∴∠OAD=ODA,

∴∠COE=DOE,

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD,

ED的切線;

(2)連接CD,交OEM,

RtODE中,

OD=32,DE=2,

OEAB

∴△COE∽△CAB,

AB=5,

AC是直徑,

EFAB,

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面積為

型】解答
結(jié)束】
25

【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個公共點M(1,0),且a<b.

(1)求ba的關(guān)系式和拋物線的頂點D坐標(用a的代數(shù)式表示);

(2)直線與拋物線的另外一個交點記為N,求DMN的面積與a的關(guān)系式;

(3)a=﹣1時,直線y=﹣2x與拋物線在第二象限交于點G,點G、H關(guān)于原點對稱,現(xiàn)將線段GH沿y軸向上平移t個單位(t>0),若線段GH與拋物線有兩個不同的公共點,試求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,A1,A2,A3,AnAn+1是直線上的點,且OA1=A1A2=A2A3=…AnAn+1=2,分別過點A1,A2A3,An,An+1l1的垂線與直線相交于點B1B2,B3,Bn,Bn+1,連接A1B2B1A2,A2B3,B2A3AnBn+1,BnAn+1,交點依次為P1,P2,P3,Pn,設(shè)P1A1A2,P2A2A3,P3A3A4,,PnAnAn+1的面積分別為S1S2,S3,Sn,則Sn=______.(用含有正整數(shù)n的式子表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】校園安全受到全社會的廣泛關(guān)注,我市某中學對部分學生就校園安全知識的了解程度,采用隨機抽樣調(diào)查的方式,并根據(jù)收集到的信息進行統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖.請你根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:

(1)接受問卷調(diào)査的學生共有   人,扇形統(tǒng)計圖中基本了解部分所對應(yīng)扇形的圓心角為   °;

(2)請補全條形統(tǒng)計圖;

(3)若該中學共有學生1600人,請根據(jù)上述調(diào)查結(jié)果,估計該學校學生中對校園安全知識達到了解基本了解程度的總?cè)藬?shù);

(4)若從對校園安全知識達到了解程度的3個女生和2個男生中隨機抽取2人參加校園安全知識競賽,請用樹狀圖或列表法求出恰好抽到1個男生和1個女生的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,ADBC,ABBC,點EAB上,DEC90°

1)求證:ADE∽△BEC

2)若AD1BC3,AE2,求AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,若干個全等的正五邊形排成環(huán)狀,圖中所示的是前3個正五邊形,要完成這一圓環(huán)還需正五邊形的個數(shù)為(  )

A. 10 B. 9 C. 8 D. 7

查看答案和解析>>

同步練習冊答案