【題目】推理填空
如圖:∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,∠DBF=∠F,求證:CE∥DF.請完成下面的解題過程.
解:∵BD平分∠ABC,CE平分∠ACB ( 已知 )
∴∠DBC=∠_____,∠ECB=∠_____ ( 角平分線的定義)
又∵∠ABC=∠ACB (已知)
∴∠_____=∠_____.
又∵∠_____=∠_____ (已知)
∴∠F=∠_____
∴CE∥DF_____.
【答案】∠ABC ∠ACB ∠DBC ∠ECB ∠DBF ∠F ∠ECB 同位角相等,兩直線平行
【解析】
結合角平分線的定義以及∠ABC=∠ACB即可得出∠DBC=∠ECB,再由∠DBF=∠F即可得出∠F=∠ECB,利用(同位角相等,兩直線平行)即可得出CE∥DF.
∵BD平分∠ABC,CE平分∠ACB ( 已知 ),
∴∠DBC=∠ABC,∠ECB=∠ACB( 角平分線的定義).
又∵∠ABC=∠ACB (已知),
∴∠DBC=∠ECB.
又∵∠DBF=∠F(已知),
∴∠F=∠ECB(等量代換),
∴CE∥DF(同位角相等,兩直線平行).
故答案為:ABC;ACB;DBC;ECB;DBF;F;ECB;同位角相等,兩直線平行.
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,BD為△ABC的角平分線,且BD=BC,E為BD延長線上的一點,BE=BA,過E作EF⊥AB,F為垂足.下列結論:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④BA+BC=2BF;其中正確的是( 。
A.①②③B.①③④C.①②④D.①②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,AC=6,BC=8,D是AB上一動點,過點D作DE⊥AC于點E,DF⊥BC于點F,連接EF,則線段EF的最小值是( )
A. 4B. 4.6C. 4.8D. 5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,四邊形ABCD是矩形,已知PB=PC.
(1)若P是矩形外一點,求證:PA=PD;
(2)若P是矩形邊AD(或BC)上的一點,則PA PD;
(3)若點P在矩形ABCD內部,上述結論是否仍然成立?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線m∥n,Rt△ABC的頂點A在直線n上,∠C=90°,AB,CB分別交直線m于點D和點E,且DB=DE,若∠1=65°,則∠BDE的度數(shù)為( )
A.115°B.120°C.130°D.145°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知a、b、c滿足|a﹣|++(c﹣4)2=0.
(1)求a、b、c的值;
(2)判斷以a、b、c為邊能否構成三角形?若能構成三角形,此三角形是什么形狀?并求出三角形的面積;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】關于x的方程|x2﹣x|﹣a=0,給出下列四個結論:①存在實數(shù)a,使得方程恰有2個不同的實根; ②存在實數(shù)a,使得方程恰有3個不同的實根;③存在實數(shù)a,使得方程恰有4個不同的實根;④存在實數(shù)a,使得方程恰有6個不同的實根;其中正確的結論個數(shù)是( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中∠ACB=90°,CD是AB邊上的高,∠BAC的角平分線AF交CD于E,則△CEF必為( )
A.等腰三角形B.等邊三角形C.直角三角形D.等腰直角三角形
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,以AB為直徑的⊙O的圓心O到直線l的距離OE=3,⊙O的半徑r=2,直線AB不垂直于直線l,過點A,B分別作直線l的垂線,垂足分別為點D,C,則四邊形ABCD的面積的最大值為__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com