【題目】關(guān)于x的方程|x2﹣x|﹣a=0,給出下列四個結(jié)論:①存在實數(shù)a,使得方程恰有2個不同的實根; ②存在實數(shù)a,使得方程恰有3個不同的實根;③存在實數(shù)a,使得方程恰有4個不同的實根;④存在實數(shù)a,使得方程恰有6個不同的實根;其中正確的結(jié)論個數(shù)是( 。
A. 1 B. 2 C. 3 D. 4
【答案】C
【解析】分析:首先由: 可得然后分析若時,由判別式可知此時方程有兩個不相等的實數(shù)根,又由時,分析當(dāng)時,有兩個不相等的實數(shù)根,當(dāng)時,有兩個相等的實數(shù)根,當(dāng)時,沒有的實數(shù)根,即可求得答案.
詳解:∵
∴
∴
當(dāng)a=0時, 方程有兩個實數(shù)根,
若
則
∴
此時方程有兩個不相等的實數(shù)根.
若
則 即則
∴
當(dāng)4a+1>0時,
此時方程有兩個不相等的實數(shù)根,
當(dāng)4a+1=0時,
此時方程有兩個相等的實數(shù)根,
當(dāng)4a+1<0時,
此時方程沒有的實數(shù)根;
∴當(dāng)時,使得方程恰有4個不同的實根,故③正確;
當(dāng)時,使得方程恰有3個不同的實根,故②正確;
當(dāng)a=0或時,使得方程恰有2個不同的實根,故①正確.
∴正確的結(jié)論是①②③.
故選C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一張長方形的紙對折,如圖所示可得到一條折痕(圖中虛線):繼續(xù)對折,對折時每次折痕與上次的折痕保持平行,連續(xù)對折三次后,可以得到7條折痕,那么對折n次,可以得到___________條折痕.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中有Rt△ABC,∠A=90°,AB=AC,A(﹣2,0),B(0,1).
(1)求點C的坐標(biāo);
(2)將△ABC沿x軸的正方向平移,在第一象限內(nèi)B、C兩點的對應(yīng)點B'、C'正好落在某反比例函數(shù)圖象上.請求出這個反比例函數(shù)和此時的直線B'C'的解析式.
(3)若把上一問中的反比例函數(shù)記為y1,點B′,C′所在的直線記為y2,請直接寫出在第一象限內(nèi)當(dāng)y1<y2時x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,梯形ABCD中,AD∥BC,DE∥AB,與對角線交于點,∥,且FG=EF.
(1)求證:四邊形是菱形;
(2)聯(lián)結(jié)AE,又知AC⊥ED,求證: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】記Sn=a1+a2+…+an,令Tn=,稱Tn為a1,a2,…,an這列數(shù)的“神秘數(shù)”.已知a1,a2,…,a500的“神秘數(shù)”為1503,那么6,a1,a2,…,a500的“神秘數(shù)”為( 。
A.1504B.1506C.1508D.1510
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于一次函數(shù)y=-2x+4,下列結(jié)論錯誤的是( )
A. 函數(shù)的圖象與x軸的交點坐標(biāo)是
B. 函數(shù)值隨自變量的增大而減小
C. 函數(shù)的圖象不經(jīng)過第三象限
D. 函數(shù)的圖象向下平移4個單位長度得的圖象
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用棋子擺出下列一組圖形:
(1)填寫下表:
圖形編號 | 1 | 2 | 3 | 4 | 5 | 6 |
圖形中的棋子 |
(2)照這樣的方式擺下去,寫出擺第個圖形棋子的枚數(shù);(用含的代數(shù)式表示).
(3)試計算第672個圖形棋子的枚數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】列分式方程解應(yīng)用題:今年植樹節(jié),某校師生到距學(xué)校20千米的公路旁植樹,一班師生騎自行車先走,走了16千米后,二班師生乘汽車出發(fā),結(jié)果同時到達(dá).已知汽車的速度比自行車的速度每小時快60千米,求兩種車的速度各是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算
(1)(﹣8)﹣(﹣5)+(﹣2)
(2)﹣12×2+(﹣2)2÷4﹣(﹣3)
(3)化簡求值:3(ab2﹣2a2 b)﹣2(ab2﹣a2 b),其中a=-1,b=2.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com