【題目】如圖1,拋物線與x軸交于點A(m﹣2,0)和B(2m+3,0)(點A在點B的左側),與y軸交于點C,連結BC.
(1)求m、n的值;
(2)如圖2,點N為拋物線上的一動點,且位于直線BC上方,連接CN、BN.求△NBC面積的最大值;
(3)如圖3,點M、P分別為線段BC和線段OB上的動點,連接PM、PC,是否存在這樣的點P,使△PCM為等腰三角形,△PMB為直角三角形同時成立?若存在,求出點P的坐標;若不存在,請說明理由.
【答案】(1)m=1,n=﹣9;(2);(3)P(,0)或(,0).
【解析】
試題分析:(1)∵拋物線的解析式為=,∴拋物線的對稱軸為直線x=2,∵點A和點B為對稱點,∴2﹣(m﹣2)=2m+3﹣2,解得m=1,∴A(﹣1,0),B(5,0),把A(﹣1,0)代入得9+n=0,解得n=﹣9;
(2)作ND∥y軸交BC于D,如圖2,拋物線解析式為 =,當x=0時,y=3,則C(0,3),設直線BC的解析式為y=kx+b,把B(5,0),C(0,3)代入得,解得:,∴直線BC的解析式為,設N(x,),則D(x,),∴ND==,∴S△NBC=S△NDC+S△NDB=5ND==,當x=時,△NBC面積最大,最大值為;
(3)存在.
∵B(5,0),C(0,3),∴BC==;分兩種情況討論:
①當∠PMB=90°,則∠PMC=90°,△PMC為等腰直角三角形,MP=MC,設PM=t,則CM=t,MB=﹣t,∵∠MBP=∠OBC,∴△BMP∽△BOC,∴,即,解得t=,BP=,∴OP=OB﹣BP=5﹣=,此時P點坐標為(,0);
②當∠MPB=90°,則MP=MC,設PM=t,則CM=t,MB=﹣t,∵∠MBP=∠CBO,∴△BMP∽△BCO,∴,即,解得t=,BP=,∴OP=OB﹣BP=5﹣=,此時P點坐標為(,0);
綜上所述,P點坐標為(,0)或(,0).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,OABC是一張放在平面直角坐標系中的矩形紙片,O為原點,點A在x軸的正半軸上,點C在y軸的正半軸上,OA=10,OC=8,在OC邊上取一點D,將紙片沿AD翻折,使點O落在BC邊上的點E處,則D點的坐標是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知反比例函數(shù)y=(2m﹣1)xm2﹣2 , 當x>0時,y隨著x的增大而減小.
(1)求m的值;
(2)當1<x<4時,求y的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下面給出五個命題:①若x=﹣1,則x3=﹣1;②角平分線上的點到角的兩邊距離相等;③相等的角是對頂角;④若x2=4,則x=2;⑤面積相等的兩個三角形全等,是真命題的個數(shù)有( 。
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學隨機調查了15名學生,了解他們一周在校的體育鍛煉時間,結果如下表所示:
一周在校的體育鍛煉時間(小時) | 5 | 6 | 7 | 8 |
人數(shù) | 2 | 5 | 6 | 2 |
那么這15名學生這一周在校參加體育鍛煉的時間的中位數(shù)是 小時.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的對角線AC與BD相交于點O,∠ACB的角平分線分別交AB,BD于M,N兩點.若AM=2,則線段ON的長為( )
A.
B.
C.1
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠DAC是△ABC的一個外角.
實驗與操作:
根據(jù)要求進行尺規(guī)作圖,并在圖中標明相應字母(保留作圖痕跡,不寫作法)
(1)作∠DAC的平分線AM;
(2)作線段AC的垂直平分線,與AM交于點F,與BC邊交于點E,連接AE,CF.
猜想并判斷四邊形AECF的形狀并加以證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com