【題目】閱讀理解:為了求1+3+32+33+…+3100的值,可設M=1+3+32+33+…+3100,則3M=3+32+33+34+…+3101,因此3M﹣M=3101﹣1.所以M=,即1+3+32+33+…+3100=.問題解決:仿照上述方法求下列式子的值.

(1)1+4+42+43+…+420

(2)5101+5102+5103+…+52018

【答案】(1) (2)

【解析】

(1)S=1+4+42+43+…+420,4S=4+42+43+…+420+421,然后兩式相減計算即可;

(2)P=5101+5102+5103+…+520185P=5102+5103+…+52018+52019,然后兩式相減計算即可.

解:(1)設S=1+4+42+43+…+420 ①,

4S=4+42+43+…+420+421 ②,

②﹣①得:3S=421﹣1,

∴S=,

1+4+42+43+…+420=;

(2)設P=5101+5102+5103+…+52018 ①,

5P=5102+5103+…+52018+52019 ②,

②﹣①得:4P=52019﹣5101,

∴p= ,

.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,△ABC中,AB=AC=10,BC=16,點DBC上,DA⊥CAA。

求:BD的長。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我市某中學為了深入學習社會主義核心價值觀,特對本校部分學生(隨機抽樣)進行了一次相關知識的測試(成績分為A、B、C、D、E、五個組,x表示測試成績),通過對測試成績的分析,得到如圖所示的兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中提供的信息解答以下問題.
A組:90≤x≤100 B組:80≤x<90 C組:70≤x<80 D組:60≤x<70 E組:x<60

(1)參加調查測試的學生共有人;請將兩幅統(tǒng)計圖補充完整
(2)本次調查測試成績的中位數(shù)落在組內.
(3)本次調查測試成績在80分以上(含80分)為優(yōu)秀,該中學共有3000人,請估計全校測試成績?yōu)閮?yōu)秀的學生有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一次函數(shù)y=(m+2)x+3-n,

(l)m,n是何值時,y隨x的增大而減小?

(2)m,n為何值時,函數(shù)的圖象經(jīng)過原點?

(3)若函數(shù)圖象經(jīng)過第二、三、四象限,求 m,n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形OABC的頂點O在坐標原點,頂點A在x軸上,∠B=120°,OA=2,將菱形OABC繞原點順時針旋轉105°至OA′B′C′的位置,則點B′的坐標為( )

A.( ,﹣
B.(﹣ ,
C.(2,﹣2)
D.( ,﹣

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為鼓勵居民節(jié)約用水,某市對居民用水收費實行“階梯價”,按每年用水量統(tǒng)計,不超過180立方米的部分按每立方米5元收費;超過180立方米不超過260立方米的部分按每立方米7元收費;超過260立方米的部分按每立方米9元收費.

(1)設每年用水量為x立方米,“階梯價”應繳水費y元,請寫出y(元)x(立方米)之間的函數(shù)解析

(2)明明預計2015全年用水量為200立方米,那么按“階梯價”收費,她家應繳水費多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】杭州國際動漫節(jié)開幕前,某動漫公司預測某種動漫玩具能夠暢銷,就用32000元購進了一批這種玩具,上市后很快脫銷,動漫公司又用68000元購進第二批這種玩具,所購數(shù)量是第一批購進數(shù)量的2倍,但每套進價多了10元.
(1)該動漫公司兩次共購進這種玩具多少套?
(2)如果這兩批玩具每套的售價相同,且全部售完后總利潤率不低于20%,那么每套售價至少是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀理解:為了求1+3+32+33+…+3100的值,可設M=1+3+32+33+…+3100,3M=3+32+33+34+…+3101因此3M﹣M=3101﹣1.所以M=,

1+3+32+33+…+3100=.問題解決:仿照上述方法求下列式子的值.

(1)1+4+42+43+…+420

(2)5101+5102+5103+…+52016

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的方程x2﹣(2m+1)x+m(m+1)=0
(1)求證:方程總有兩個不相等的實數(shù)根;
(2)設方程的兩根分別為x1、x2 , 求x +x 的最小值.

查看答案和解析>>

同步練習冊答案