【題目】交于,交于,平分,交于,,,
(1)求證:
(2)求的度數.
【答案】(1)見解析;(2)115°
【解析】
(1)由∠EGH=130°,∠EFC=50°可得出∠EGH+∠EFC=180°,結合鄰補角互補可得出∠EFC=∠EGA,再利用“同位角相等,兩直線平行”可證出AB∥CD;
(2)由鄰補角互補可求出∠EFD的度數,結合FH平分∠EFD可得出∠HFD的度數,再利用“兩直線平行,同旁內角互補”可求出∠BHF的度數.
(1)∵∠EGH=130°,∠EFC=50°,
∴∠EGH+∠EFC=180°.
∵∠EGH+∠EGA=180°,
∴∠EFC=∠EGA,
∴AB∥CD.
(2)∵∠EFC+∠EFD=180°,∠EFC=50°,
∴∠EFD=130°.
∵FH平分∠EFD,
∴.
∵AB∥CD,
∴∠BHF=180°-∠HFD=115°.
科目:初中數學 來源: 題型:
【題目】某水果批發(fā)商場經銷一種高檔水果,如果每千克盈利10元,每天可售出500千克.經市場調查發(fā)現,在進貨價不變的情況下,若每千克漲價1元,日銷售量將減少20千克.
(1)現該商場要保證每天盈利6 000元,同時又要顧客得到實惠,那么每千克應漲價多少元?
(2)若該商場單純從經濟角度看,每千克這種水果漲價多少元,能使商場獲利最多?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB為半圓O的直徑,C為BA延長線上一點,CD切半圓O于點D。連結OD,作BE⊥CD于點E,交半圓O于點F。已知CE=12,BE=9
(1)求證:△COD∽△CBE;
(2)求半圓O的半徑 的長
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如果一個分式的分子或分母可以因式分解,且這個分式不可約分,那么我們稱這
個分式為“和諧分式”.
(1)下列分式:①;②;③;④. 其中是“和諧分式”是 (填寫序號即可);
(2)若為正整數,且為“和諧分式”,請寫出的值;
(3)在化簡時,
小東和小強分別進行了如下三步變形:
小東:
小強:
顯然,小強利用了其中的和諧分式, 第三步所得結果比小東的結果簡單,
原因是: ,
請你接著小強的方法完成化簡.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,中,,,點P從A點出發(fā)沿路徑向終點運動,終點為B點;點Q從B點出發(fā)沿路徑向終點運動,終點為A點點P和Q分別以1和3的運動速度同時開始運動,兩點都要到相應的終點時才能停止運動,在某時刻,分別過P和Q作于E,于問:點P運動多少時間時,與QFC全等?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】三角板是學習數學的重要工具,將一副三角板中的兩塊直角三角板的直角頂點按如圖方式疊放在一起,當且點在直線的上方時,解決下列問題:(友情提示:,,.
(1)①若,則的度數為 ;
②若,則的度數為 ;
(2)由(1)猜想與的數量關系,并說明理由.
(3)這兩塊三角板是否存在一組邊互相平行?若存在,請直接寫出的角度所有可能的值(不必說明理由);若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(本題10分) 如圖,已知:AB是⊙O的直徑,點C在⊙O上,CD是⊙O的切線,AD⊥CD于點D.E是AB延長線上一點,CE交⊙O于點F,連結OC,AC.
(1)求證:AC平分∠DAO.
(2)若∠DAO=105°,∠E=30°.
①求∠OCE的度數.
②若⊙O的半徑為2 ,求線段EF的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,曲線l是由函數y= 在第一象限內的圖象繞坐標原點O逆時針旋轉45°得到的,過點A(﹣4 ,4 ),B(2 ,2 )的直線與曲線l相交于點M、N,則△OMN的面積為 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com