等腰三角形一腰上的中線將這個等腰三角形的周長分成15和6兩部分,則這個等腰三角形的腰長是________.

10
分析:等腰三角形一腰上的中線將它的周長分為15和6兩部分,但已知沒有明確等腰三角形被中線分成的兩部分的長,哪個是15,哪個是6,因此,有兩種情況,需要分類討論.
解答:解:根據(jù)題意畫出圖形,如圖,
設等腰三角形的腰長AB=AC=2x,BC=y,
∵BD是腰上的中線,
∴AD=DC=x,
若AB+AD的長為6,則2x+x=6,解得x=2,
則x+y=15,即2+y=15,解得y=13;
三角形的三邊為4、4、13,不能構成三角形,不合題意.
若AB+AD的長為15,則2x+x=15,解得x=5,
則x+y=6,即5+y=6,解得y=1;
三角形的三邊為10、10、1,能構成三角形,符合題意.
所以等腰三角形的腰長只能是10.
故填10.
點評:本題考查了等腰三角形的性質(zhì)及三角形的三邊關系;在解決與等腰三角形有關的問題,由于等腰所具有的特殊性質(zhì),很多題目在已知不明確的情況下,要進行分類討論,才能正確解題,因此,解決和等腰三角形有關的邊角問題時,要仔細認真,避免出錯.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

思考下列命題:
(1)等腰三角形一腰上的高線等于腰長的一半,則頂角為75度;
(2)兩圓圓心距小于兩圓半徑之和,則兩圓相交;
(3)在反比例函數(shù)y=
2
x
中,如果函數(shù)值y<1時,那么自變量x>2;
(4)圓的兩條不平行弦的垂直平分線的交點一定是圓心;
(5)三角形的重心是三條中線的交點,而且一定在這個三角形的內(nèi)部;
其中正確命題的有幾個(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

14、下列命題中不正確的是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

邊長為整數(shù)的等腰三角形一腰上的中線將其周長分為1:2的兩部分,那么所有這些等腰三角形中,面積最小的三角形的面積是
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在△ABC中,AB=AC,AB的垂直平分線與AC所在的直線相交所得到銳角為56°,則∠B等于
 
.若等腰三角形一腰上的高和另一腰的夾角為25°,則該三角形的一個底角是
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在下列命題中:
①等腰三角形的對稱軸是底邊上的高;
②等腰三角形的角平分線、中線和高互相重合;
③等腰三角形一腰上的高與另一腰的夾角為60°,則這個等腰三角形的頂角是30°;
④等腰三角形的三邊均為整數(shù),且周長為13,則底邊是3或5;
⑤等腰三角形頂角的外角平分線平行于底邊;
⑥等腰三角形一腰上的高與底邊的夾角等于頂角的一半;
其中正確的個數(shù)是
2
2
個.

查看答案和解析>>

同步練習冊答案