如圖,方格紙中的每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位的正方形,在建立平面直角坐標(biāo)系后,△ABC的頂點(diǎn)均在格點(diǎn)上,點(diǎn)B的坐標(biāo)為(1,0)
(1)畫出△ABC關(guān)于x軸對(duì)稱的△A1B1C1,并寫出A點(diǎn)的對(duì)應(yīng)點(diǎn)A1的坐標(biāo)為
 
;
(2)畫出將△ABC繞原點(diǎn)O按逆時(shí)針旋轉(zhuǎn)90°所得的△A2B2C2,并寫出A點(diǎn)的對(duì)應(yīng)點(diǎn)A2的坐標(biāo)為
 
;
(3)①△A1B1C1與△A2B2C2是否關(guān)于某條直線成軸對(duì)稱嗎?若是,請(qǐng)畫出所有的對(duì)稱軸;
②△A1B1C1與△A2B2C2是否關(guān)于某點(diǎn)成中心對(duì)稱嗎?若是,寫出所有的對(duì)稱中心點(diǎn)的坐標(biāo).
考點(diǎn):作圖-旋轉(zhuǎn)變換,作圖-軸對(duì)稱變換
專題:
分析:(1)根據(jù)網(wǎng)格結(jié)構(gòu)找出點(diǎn)A、B、C關(guān)于x軸的對(duì)稱點(diǎn)A1、B1、C1的位置,然后順次連接即可,再根據(jù)平面直角坐標(biāo)系寫出A1點(diǎn)的坐標(biāo);
(2)根據(jù)網(wǎng)格結(jié)構(gòu)找出點(diǎn)A、B、C繞點(diǎn)O按照逆時(shí)針旋轉(zhuǎn)90°后的對(duì)應(yīng)點(diǎn)A2、B2、C2的位置,然后順次連接即可,再根據(jù)平面直角坐標(biāo)系寫出A2點(diǎn)的坐標(biāo);
(3)①從圖中可看出△A1B1C1與△A2B2C2關(guān)于直線AO對(duì)稱;
②觀察可得,△A1B1C1與△A2B2C2關(guān)于點(diǎn)(
1
2
1
2
)成中心對(duì)稱.
解答:解:(1)如圖所示,△A1B1C1即為△ABC關(guān)于x軸對(duì)稱的圖形,
A1點(diǎn)的坐標(biāo)是(2,-2).

(2)如圖所示,△A2B2C2即為△ABC繞原點(diǎn)O按逆時(shí)針旋轉(zhuǎn)90°的三角形,
A2點(diǎn)的坐標(biāo)是(-2,2).

(3)①△A1B1C1與△A2B2C2關(guān)于直線AO對(duì)稱;
②△A1B1C1與△A2B2C2關(guān)于點(diǎn)(
1
2
,
1
2
)成中心對(duì)稱.
故答案為:(2,-2);:(-2,2).
點(diǎn)評(píng):本題考查了利用旋轉(zhuǎn)變換與軸對(duì)稱變換作圖,熟練掌握網(wǎng)格結(jié)構(gòu),準(zhǔn)確找出對(duì)應(yīng)點(diǎn)的位置是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

三月是傳統(tǒng)的學(xué)習(xí)雷鋒月,某校號(hào)召全校學(xué)生“學(xué)雷鋒精神,做雷鋒傳人”,并組織各班級(jí)代表(每班兩人)交流感受,九(2)班小強(qiáng)、小斌和小遠(yuǎn)都希望作為代表參加.現(xiàn)隨機(jī)選其中兩人參加,則小強(qiáng)和小斌同時(shí)入選的概率是( 。
A、
1
2
B、
1
3
C、
1
4
D、
1
6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

若x=5是分式方程
2
x+3
=
m
x-1
的根,則m的值為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在6×6的正方形網(wǎng)格中,線段AB的端點(diǎn)均在格點(diǎn)上,按下面的要求畫圖:
(1)在圖①中以點(diǎn)A為端點(diǎn),畫線段AC,使點(diǎn)C在格點(diǎn)上,且∠CAB=90°.(畫一個(gè)即可)
(2)在圖②中以AB為斜線,畫等腰直角△ABD(畫一個(gè)即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知直角梯形ABCD中,∠DAB=∠B=90°,AD=4,DC=BC=8,將四邊形ABCD折疊,使A與C重合,HK為折痕,則CH=
 
,AK=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC中,DE∥BC,AD:AB=1:3,則S△ADE:S△ABC=( 。
A、1:3B、1:5
C、1:6D、1:9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某市組織20輛汽車裝運(yùn)食品、藥品、生活用品三種救災(zāi)物資共100噸到災(zāi)民安置點(diǎn).按計(jì)劃20輛汽車都要裝運(yùn),每輛汽車只能裝運(yùn)同一種救災(zāi)物資且必須裝滿,根據(jù)表中提供的信息,解答下列問題:
物資種類 食品 藥品 生活用品
每輛汽車裝載量(噸) 6 5 4
每噸所需運(yùn)費(fèi)(元/噸) 120 160 100
如果裝運(yùn)食品和裝運(yùn)藥品的車輛數(shù)均不少于4輛,請(qǐng)問有幾種方案安排車輛?若要求總運(yùn)費(fèi)最少,應(yīng)如何安排車輛?并求出最少總運(yùn)費(fèi).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線y1=(x-5)(x-a)與x軸交于定點(diǎn)A和另一點(diǎn)C.
(1)求定點(diǎn)A的坐標(biāo).
(2)以坐標(biāo)原點(diǎn)為圓心,半徑為
5
的圓交拋物線y1=(x-5)(x-a)于點(diǎn)B,當(dāng)直線AB與圓相切時(shí),求y1的解析式.
(3)在(2)中的拋物線上是否存在點(diǎn)P(P在點(diǎn)A的右上方),使△PAC、△PBC的面積相等?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直線y=3x+3交坐標(biāo)軸于A,B,點(diǎn)C在雙曲線y=
k
x
(x<0)上,且BC⊥AB,連接AC交雙曲線于D,若D恰好為AC的中點(diǎn),則k的值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案