(2013•蒼梧縣二模)如圖1,拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)為C(1,4),交x軸于A,B兩點(diǎn),交y軸于點(diǎn)D,其中點(diǎn)B的坐標(biāo)為(3,0)

(1)求拋物線的解析式;
(2)如圖2,設(shè)E是拋物線上在第一象限內(nèi)的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)E作x軸的平行線交拋物線于另一點(diǎn)F,過(guò)點(diǎn)F作FG垂直于x軸于點(diǎn)G,再過(guò)點(diǎn)E作EH垂直于x軸于點(diǎn)H,得到矩形EFGH.則在點(diǎn)E的運(yùn)動(dòng)過(guò)程中,當(dāng)矩形EFGH為正方形時(shí),求出該正方形的邊長(zhǎng);
(3)如圖3,在拋物線上是否存在一點(diǎn)T,過(guò)點(diǎn)T作x軸的垂線,垂足為點(diǎn)M,過(guò)點(diǎn)M作MN∥BD,交線段AD于點(diǎn)N,連接MD,使△DNM∽△BMD?若存在,求出點(diǎn)T的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
分析:(1)設(shè)拋物線的解析式為:y=a(x-1)2+4,然后將點(diǎn)B的坐標(biāo)代入函數(shù)解析式即可求得此拋物線的解析式;
(2)設(shè)E點(diǎn)坐標(biāo)為(n,-n2+2n+3),拋物線對(duì)稱(chēng)軸為x=1,根據(jù)2|n-1|=EF,列方程求解;
(3)首先設(shè)M的坐標(biāo)為(a,0),求得BD與DM的長(zhǎng),由平行線分線段成比例定理,求得MN的長(zhǎng),然后由相似三角形對(duì)應(yīng)邊成比例,即可得DM2=BD•MN,則可得到關(guān)于a的一元二次方程,解方程即可求得答案.
解答:解:(1)設(shè)拋物線的解析式為:y=a(x-1)2+4,
∵點(diǎn)B的坐標(biāo)為(3,0).
∴4a+4=0,
∴a=-1,
∴此拋物線的解析式為:y=-(x-1)2+4=-x2+2x+3;

(2)設(shè)E點(diǎn)坐標(biāo)為(n,-n2+2n+3),拋物線對(duì)稱(chēng)軸為x=1,
由2(n-1)=EF,得2(n-1)=-(-n2+2n+3)或2(n-1)=-n2+2n+3,
解得n=2±
5
或n=±
5

∵n>0,
∴n=2+
10
或n=
5
,
邊長(zhǎng)EF=2(n-1)=2+2
10
或2
5
-2;

(3)存在.
過(guò)點(diǎn)T作x軸的垂線,垂足為點(diǎn)M,過(guò)點(diǎn)M作MN∥BD,交線段AD于點(diǎn)N,連接MD,
∵BD=
32+32
=3
2
,設(shè)M(c,0),
∵M(jìn)N∥BD,
MN
BD
=
AM
AB
,
MN
3
2
=
1+c
4

∴MN=
3
2
4
(1+c),DM=
32+c2
,
要使△DNM∽△BMD,
DM
BD
=
MN
DM
,即DM2=BD•MN,
可得:9+c2=3
2
×
3
2
4
(1+c),
解得:c=
3
2
或c=3(舍去).
當(dāng)x=
3
2
時(shí),y=-(
3
2
-1)2+4=
15
4

故存在,點(diǎn)T的坐標(biāo)為(
3
2
15
4
).
點(diǎn)評(píng):此題考查了待定系數(shù)法求函數(shù)的解析式,相似三角形的判定與性質(zhì),以及平行線分線段成比例定理等知識(shí).解題的關(guān)鍵是準(zhǔn)確地用點(diǎn)的坐標(biāo)表示線段的長(zhǎng),根據(jù)圖形的特點(diǎn),列方程求解,注意數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•蒼梧縣二模)如圖,△ABC中,DE∥BC,DE分別交邊AB、AC于D、E兩點(diǎn),若AD:AB=1:3,則△ADE與四邊形DBCE的面積比為
1:8
1:8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•蒼梧縣二模)計(jì)算:(4ab3-8a2b2)÷4ab+(2a+b)(2a-b)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•蒼梧縣二模)如圖,已知CD是⊙O的直徑,AC⊥CD,垂足為C,弦DE∥OA,直線AE,CD相交于點(diǎn)B.
(1)求證:直線AB是⊙O的切線;
(2)如果AC=1,BE=2,求⊙O的半徑.

查看答案和解析>>

同步練習(xí)冊(cè)答案