求代數(shù)式的最小值

 

【答案】

解:∵=

    ∵

    ∴

    ∴當(dāng)有最小值

 【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年福建泉州第三中學(xué)八年級(jí)上學(xué)期期中考試數(shù)學(xué)試題(帶解析) 題型:解答題

先閱讀理解下面的例題,再按要求解答下列問(wèn)題:
例題:求代數(shù)式的最小值.
解:


的最小值是.
(1)求代數(shù)式的最小值;
(2)求代數(shù)式的最大值;
(3)某居民小區(qū)要在一塊一邊靠墻(墻長(zhǎng)m)的空地上建一個(gè)長(zhǎng)方形花園,花園一邊靠墻,另三邊用總長(zhǎng)為m的柵欄圍成. 如圖,設(shè)(m),請(qǐng)問(wèn):當(dāng)取何值時(shí),花園的面積最大?最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2015屆江蘇建湖實(shí)驗(yàn)初中教育集團(tuán)初二上12月月考數(shù)學(xué)卷(解析版) 題型:解答題

例:說(shuō)明代數(shù)式的幾何意義,并求它的最小值.

解:,如圖,建立平面直角坐標(biāo)系,點(diǎn)P(x,0)是x軸上一點(diǎn),則可以看成點(diǎn)P與點(diǎn)A(0,1)的距離,可以看成點(diǎn)P與點(diǎn)B(3,2)的距離,所以原代數(shù)式的值可以看成線段PA與PB長(zhǎng)度之和,它的最小值就是PA+PB的最小值.

設(shè)點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn)為A′,則PA=PA′,因此,求PA+PB的最小值,

只需求PA′+PB的最小值,而點(diǎn)A′、B間的直線段距離最短,

所以PA′+PB的最小值為線段A′B的長(zhǎng)度.為此,構(gòu)造直角

三角形A′CB,因?yàn)锳′C=3,CB=3,所以A′B=,

即原式的最小值為。

根據(jù)以上閱讀材料,解答下列問(wèn)題:

(1)代數(shù)式的值可以看成平面直角坐標(biāo)系中點(diǎn)P(x,0)與點(diǎn)A(1,1)、點(diǎn)B        的距離之和.(填寫(xiě)點(diǎn)B的坐標(biāo))

(2)求代數(shù)式的最小值

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2015屆浙江省建德市七年級(jí)下學(xué)期期中數(shù)學(xué)卷(解析版) 題型:選擇題

甲、乙兩位同學(xué)對(duì)問(wèn)題“求代數(shù)式的最小值”提出各自的想法.甲說(shuō):“可以利用已經(jīng)學(xué)過(guò)的完全平方公式,把它配方成,所以代數(shù)式的最小值為-2”.乙說(shuō):“我也用配方法,但我配成,最小值為2”.你認(rèn)為( )

A.甲對(duì)             B.乙對(duì)             C.甲、乙都對(duì)        D.甲乙都不對(duì)

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年福建泉州第三中學(xué)八年級(jí)上學(xué)期期中考試數(shù)學(xué)試題(解析版) 題型:解答題

先閱讀理解下面的例題,再按要求解答下列問(wèn)題:

例題 :求代數(shù)式的最小值.

解:

         的最小值是.

(1)求代數(shù)式的最小值;

(2)求代數(shù)式的最大值;

(3)某居民小區(qū)要在一塊一邊靠墻(墻長(zhǎng)m)的空地上建一個(gè)長(zhǎng)方形花園,花園一邊靠墻,另三邊用總長(zhǎng)為m的柵欄圍成. 如圖,設(shè)(m),請(qǐng)問(wèn):當(dāng)取何值時(shí),花園的面積最大?最大面積是多少?

 

查看答案和解析>>

同步練習(xí)冊(cè)答案