【題目】如圖,平行四邊形ABCD中,AC、BD相交于點(diǎn)O,E、F是對(duì)角線BD上的點(diǎn),且BE=DF,連接AE、CE、CF、AF.
(1)求證:AE=CF;
(2)若平行四邊形ABCD的面積是12,△OCF的面積是2,求△ADF的面積.
【答案】(1)見解析;(2)1
【解析】
(1)通過(guò)平行四邊形的性質(zhì)和平行線的性質(zhì)得出,,然后利用SAS證明,則結(jié)論可證.
(2)過(guò)點(diǎn)A作AG⊥BD于點(diǎn)G,過(guò)點(diǎn)C作CH⊥BD于點(diǎn)H,首先證明,然后得出,然后利用面積之間的關(guān)系得出, ,最后利用即可得出答案.
(1)∵四邊形ABCD是平行四邊形,
∴ ,
在和中,
;
(2)如圖,過(guò)點(diǎn)A作AG⊥BD于點(diǎn)G,過(guò)點(diǎn)C作CH⊥BD于點(diǎn)H,
,
.
∵四邊形ABCD是平行四邊形,
∴ ,
在和中,
.
底相等,高也相等,所以面積也相等,
.
底相同,高相等,所以面積也相等,
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】 若一個(gè)三角形一條邊的平方等于另兩條邊的乘積,我們把這個(gè)三角形叫做比例三角形.
(1)已知△ABC是比例三角形,AB=2,BC=3,請(qǐng)直接寫出所有滿足AC條件的長(zhǎng);
(2)如圖,點(diǎn)A在以BC為直徑的圓上,BD平分∠ABC,AD∥BC,∠ADC=90°.
①求證:△ABC為比例三角形;
②求的值.
(3)若以點(diǎn)C為頂點(diǎn)的拋物線y=mx2-4mx-12m(m<0)與x軸交于A、B兩點(diǎn),△ABC是比例三角形,若點(diǎn)M(x0,y0)為該拋物線上任意一點(diǎn),總有n-≤-my02-40y0+298成立,求實(shí)數(shù)n的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系中,矩形OABC的頂點(diǎn)C在x軸的負(fù)半軸上,點(diǎn)A在y軸正半軸上,矩形OABC的面積為8.把矩形OABC沿DE翻折,使點(diǎn)B與點(diǎn)O重合,點(diǎn)C落在第三象限的G點(diǎn)處,作EH⊥x軸于H,過(guò)E點(diǎn)的反比例函數(shù)y=圖象恰好過(guò)DE的中點(diǎn)F.則k=_____,線段EH的長(zhǎng)為:_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD中,AD=6,E為AB的中點(diǎn),將△ADE沿DE翻折得到△FDE,延長(zhǎng)EF交BC于G,FH⊥BC,垂足為H,延長(zhǎng)DF交BC與點(diǎn)M,連接BF、DG.以下結(jié)論:①∠BFD+∠ADE=180°;②△BFM為等腰三角形;③△FHB∽△EAD;④BE=2FM⑤S△BFG=2.6 ⑥sin∠EGB=;其中正確的個(gè)數(shù)是( 。
A.3B.4C.5D.6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,線段AB是⊙O的直徑,點(diǎn)C在⊙O上,且∠CAB=30°,設(shè)點(diǎn)D是線段AC上任意一點(diǎn)(不含端點(diǎn)),連接OD,當(dāng)CD+OD的最小值為9時(shí),則⊙O的直徑AB的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在中,點(diǎn)D、E分別在AB、AC上,,,
求證:;
若,把繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)到圖2的位置,點(diǎn)M,P,N分別為DE,DC,BC的中點(diǎn),連接MN,PM,PN.
判斷的形狀,并說(shuō)明理由;
把繞點(diǎn)A在平面內(nèi)自由旋轉(zhuǎn),若,,試問(wèn)面積是否存在最大值;若存在,求出其最大值若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小林在沒(méi)有量角器和圓規(guī)的情況下,利用刻度尺和一副三角板畫出了一個(gè)角的平分線,他的做法是這樣的:如圖,
①利用刻度尺在∠AOB的兩邊OA,OB上分別取OM=ON;
②利用兩個(gè)三角板,分別過(guò)點(diǎn)M,N畫OM,ON的垂線,交點(diǎn)為P;
③畫射線OP.則射線OP為∠AOB的平分線.
(1)請(qǐng)寫出射線OP為∠AOB的平分線的證明過(guò)程.
(2)請(qǐng)根據(jù)你的證明過(guò)程,寫出小林的畫法的依據(jù)______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,AD=BC=2AB,F是AD的中點(diǎn),作CE⊥AB,垂足E在線段AB上,連接EF、CF.
(1)若∠ADC=80°,求∠ECF;
(2)求證:∠ECF=∠CEF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了豐富校園文化,某學(xué)校決定舉行學(xué)生趣味運(yùn)動(dòng)會(huì),將比賽項(xiàng)目確定為袋鼠跳、夾球跑、跳大繩、綁腿跑和拔河賽五種.為了解學(xué)生對(duì)這五項(xiàng)運(yùn)動(dòng)的喜歡情況,隨機(jī)調(diào)查了該校a名學(xué)生最喜歡的一種項(xiàng)目(每名學(xué)生必選且只能選擇五項(xiàng)中的一種)并將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計(jì)圖表:
學(xué)生最喜歡的活動(dòng)項(xiàng)目的人數(shù)統(tǒng)計(jì)表 | ||
項(xiàng)目 | 學(xué)生數(shù)(名) | 百分比(%) |
袋鼠跳 | 45 | 15 |
夾球跑 | 30 | c |
跳大繩 | 75 | 25 |
綁腿跑 | b | m |
拔河賽 | 90 | 30 |
根據(jù)圖表中提供的信息,解答下列問(wèn)題:
(1)a= ,b= ,c= ;
(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)根據(jù)調(diào)查結(jié)果,請(qǐng)你估計(jì)該校3000名學(xué)生中有多少名學(xué)生最喜歡綁腿跑.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com