【題目】如圖,在大樓AB的正前方有一斜坡CD,CD=4米,坡角∠DCE=30°,小紅在斜坡下的點(diǎn)C處測得樓頂B的仰角為60°,在斜坡上的點(diǎn)D處測得樓頂B的仰角為45°,其中點(diǎn)A、C、E在同一直線上.
(1)求斜坡CD的高度DE;
(2)求大樓AB的高度(結(jié)果保留根號(hào))
【答案】(1)2米;(2)(6+)或(6-)米.
【解析】試題分析:(1)在在Rt△DCE中,利用30°所對直角邊等于斜邊的一半,可求出DE=2米;(2)過點(diǎn)D作DF⊥AB于點(diǎn)F,則AF=2,根據(jù)三角函數(shù)可用BF表示BC、BD,然后可判斷△BCD是Rt△,進(jìn)而利用勾股定理可求得BF的長,AB的高度也可求.
試題解析:(1)在Rt△DCE中,∠DEC=90°,∠DCE=30°,∴DE=DC=2米;(2)過D作DF⊥AB,交AB于點(diǎn)F,則AF=DE=2米.∵∠BFD=90°,∠BDF=45°,∴∠BFD=45°,∴BF=DF.設(shè)BF=DF=x米,則AB=(x+2)米,在Rt△ABC中,∠BAC=90°,∠BCA=60°,∴sin∠BCA=,∴BC=AB÷sin∠BCA=(x+2)÷=米,在Rt△BDF中,∠BFD=90°,米,∵∠DCE=30°,∠ACB=60°,∴∠DCB=90°.∴,解得:x=4+或x=4﹣,則AB=(6+)米或(6﹣)米.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】實(shí)踐探究題
(1)是不為1的有理數(shù),我們把稱為的差倒數(shù).如:2的差倒數(shù)是, 的差倒數(shù)是.已知, 是的差倒數(shù), 是的差倒數(shù), 是的差倒數(shù),…,依此類推, 的差倒數(shù)________.
(2)觀察下列有規(guī)律的數(shù): , , , , , …根據(jù)規(guī)律可知:
①第10個(gè)數(shù)是________, 是第________個(gè)數(shù).
②計(jì)算________.(直接寫出答案即可)
(3)高斯函數(shù)[x],也稱為取整函數(shù),即[x]表示不超過x的最大整數(shù).
例如:[2.3]=2,[-1.5]=-2.
則下列結(jié)論:①[-2.1]+[1]=-2;②[x]+[-x]=0;③[2.5]+[-2.5]=-1; ④[x+1]+[-x+1]的值為2.
其中正確的結(jié)論有________ (填序號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校想了解學(xué)生每周的課外閱讀時(shí)間情況,隨機(jī)調(diào)查了部分學(xué)生,對學(xué)生每周的課外閱讀時(shí)間x(單位:小時(shí))進(jìn)行分組整理,并繪制了如圖所示的不完整的頻數(shù)分布直方圖和扇形統(tǒng)計(jì)圖:
根據(jù)圖中提供的信息,解答下列問題:
(1)共隨機(jī)調(diào)查了名學(xué)生,課外閱讀時(shí)間在6﹣8小時(shí)之間有人,并補(bǔ)全頻數(shù)分布直方圖
(2)求扇形統(tǒng)計(jì)圖中m的值和E組對應(yīng)的圓心角度數(shù);
(3)請估計(jì)該校3000名學(xué)生每周的課外閱讀時(shí)間不小于6小時(shí)的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若一個(gè)多邊形的內(nèi)角和與外角和之和是1800°,則此多邊形是( )
A. 八邊形 B. 十邊形 C. 十二邊形 D. 十四邊形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】實(shí)驗(yàn)初中有A、B兩個(gè)閱覽室,甲、乙、丙三名學(xué)生各自隨機(jī)選擇其中的一個(gè)閱覽室閱讀.
下列事件中,是必然事件的為( )
A.甲、乙同學(xué)都在A閱覽室;B.甲、乙、丙同學(xué)中至少兩人在A閱覽室;
C.甲、乙同學(xué)在同一閱覽室D.甲、乙、丙同學(xué)中至少兩人在同一閱覽室
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店準(zhǔn)備購進(jìn)一批季節(jié)性小家電,單價(jià)40元,經(jīng)市場預(yù)測,銷售定價(jià)為52元時(shí),可售出180個(gè)。定價(jià)每增加1元,銷售量凈減少10個(gè);定價(jià)每減少1元,銷售量凈增加10個(gè)。因受庫存的影響,每批次進(jìn)貨個(gè)數(shù)不得超過180個(gè)。商店若準(zhǔn)備獲利2000元,則應(yīng)進(jìn)貨多少個(gè)?定價(jià)多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】判定一個(gè)三角形是不是等腰三角形,我們經(jīng)常利用以下的判定方法:“如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對的邊也相等”,請你利用以上判定方法解決下列問題
如圖1,在△ABC中,∠ACB=90°,∠B=30°,將△ABC繞頂點(diǎn)C順時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)角為β
(0°<β<180°),得到△A′B′C
(1)設(shè)A′B′與CB相交于點(diǎn)D,
①當(dāng)旋轉(zhuǎn)角為β=25°,∠B′DB= °;
②當(dāng)AB∥CB′ 時(shí),求證:D是A′B′ 的中點(diǎn);
(2)如圖2,E是AC邊上的點(diǎn),且,P是A′B′邊上的點(diǎn),且∠A′PC=60°,連接EP、CP,已知AC=10,①當(dāng)β= °時(shí),EP長度最大,最大值為 ;
②當(dāng)β= °時(shí),△ECP的面積最大,最大值為 。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com