如圖,在等腰梯形ABCD中,AD∥BC,BC =8,AD=2,且∠B=45°,將含45°角的直角三角尺的頂點(diǎn)E放在BC邊上滑動(dòng),一直角邊始終經(jīng)過(guò)點(diǎn)A,斜邊與CD交于點(diǎn)F,若要使△ABE為等腰三角形,則CF的長(zhǎng)應(yīng)等于 .
5或4或
解析試題分析:在等腰梯形ABCD中,AD∥BC,BC =8,AD=2,且∠B=45°,AB=CD,=45°;,將含45°角的直角三角尺的頂點(diǎn)E放在BC邊上滑動(dòng),那么該三角形是等腰直角三角形;若要使△ABE為等腰三角形,可能有以下幾種情況,以AB為△ABE的腰長(zhǎng)和以AB為△ABE的底邊;分別過(guò)A、D做等腰梯形ABCD的高,BC =8,AD=2,且∠B=45°,所以AB=CD=,所以要使△ABE為等腰三角形,根據(jù)題意那么CF=5;同理解得CF=4或
考點(diǎn):梯形、等腰三角形
點(diǎn)評(píng):本題考查梯形、等腰三角形,解答本題需要掌握等腰梯形的性質(zhì),等腰三角形的性質(zhì),運(yùn)用其性質(zhì)來(lái)解答本題
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:中考必備’04全國(guó)中考試題集錦·數(shù)學(xué) 題型:044
如圖,在等腰梯形AB∥⊥CD中,BC∥AD,BC=8,AD=20,AB=DC=10,點(diǎn)P從A點(diǎn)出發(fā)沿AD邊向點(diǎn)D移動(dòng),點(diǎn)Q自A點(diǎn)出發(fā)沿A→B→C的路線移動(dòng),且PQ∥DC,若AP=x,梯形位于線段PQ右側(cè)部分的面積為S.
(1)分別求出當(dāng)點(diǎn)Q位于AB、BC上時(shí),S與x之間的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;
(2)當(dāng)線段PQ將梯形AB∥⊥CD分成面積相等的兩部分時(shí),x的值是多少?
(3)當(dāng)(2)的條件下,設(shè)線段PQ與梯形AB∥⊥CD的中位線EF交于O點(diǎn),那么OE與OF的長(zhǎng)度有什么關(guān)系?借助備用圖說(shuō)明理由;并進(jìn)一步探究:對(duì)任何一個(gè)梯形,當(dāng)一直線l經(jīng)過(guò)梯形中位線的中點(diǎn)并滿足什么條件時(shí),一定能平分梯形的面積?(只要求說(shuō)出條件,不需要證明)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com