【題目】小王購買了一套經(jīng)濟(jì)適用房,他準(zhǔn)備將地面鋪上地磚,地面結(jié)構(gòu)如圖所示.根據(jù)圖中的數(shù)據(jù)(單位:m),解答下列問題:

1)用含的代數(shù)式表示地面總面積;

2)已知客廳面積比衛(wèi)生間面積多21平方米,且地面總面積是衛(wèi)生間面積的15.若鋪1平方米地磚的平均費(fèi)用為100元,那么鋪地磚的總費(fèi)用為多少元?

【答案】(1);(2)總費(fèi)用為4500.;

【解析】

1)設(shè)客廳的寬是x,衛(wèi)生間的寬是y,根據(jù)長方形的面積=×寬,表示出總面積.
2)設(shè)客廳的寬是x,衛(wèi)生間的寬是y,根據(jù)已知客廳面積比衛(wèi)生間面積多21平方米,且地面總面積是衛(wèi)生間面積的15倍.若鋪1平方米地磚的平均費(fèi)用為100元,列出方程組求解.

解:(1)地面的總面積為:

= .

(2)依據(jù)題意,可得方程組:

解得:

所以,地面的總面積為:(平房米).

當(dāng)鋪1平方米地磚的平均費(fèi)用為100元,鋪地磚的總費(fèi)用為:(元).

答:那么鋪地磚的總費(fèi)用為4500.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象經(jīng)過(-1,0)(0,3),下列結(jié)論中錯(cuò)誤的是( )

A.abc<0
B.9a+3b+c=0
C.a-b=-3
D.4ac﹣b2<0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩支儀仗隊(duì)各10名隊(duì)員的身高(單位:cm)如下表:

甲隊(duì)

179

177

178

177

178

178

179

179

177

178

乙隊(duì)

178

178

176

180

180

178

176

179

177

178


(1)甲隊(duì)隊(duì)員的平均身高為cm,乙隊(duì)隊(duì)員的平均身高為cm;
(2)請(qǐng)用你學(xué)過的統(tǒng)計(jì)知識(shí)判斷哪支儀仗隊(duì)的身高更為整齊呢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P點(diǎn)是燈塔所在位置,輪船A位于燈塔南偏東40°方向,輪船B位于燈塔北偏東30°方向,輪船C位于燈塔北偏西70°方向,航線PE(射線)平分∠BPC

1)求∠APE的度數(shù);

2)航線PE上的輪船D相對(duì)于燈塔P的方位是什么?

(以正北、正南方向?yàn)榛鶞?zhǔn)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解下列方程(組):

1;

2x2;

3;

4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線l1ykx+bk0)與x軸、y軸分別交于A、B兩點(diǎn),與直線l2y3x交于點(diǎn)C,其中點(diǎn)C的坐標(biāo)為(,c),點(diǎn)B的坐標(biāo)為(0,3).

1)求點(diǎn)C的坐標(biāo);

2)求直線l1的表達(dá)式;

3)在x軸上有一點(diǎn)D3,0),求△BCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線
(1)該拋物線的對(duì)稱軸是 , 頂點(diǎn)坐標(biāo);
(2)選取適當(dāng)?shù)臄?shù)據(jù)填入下表,并在直角坐標(biāo)系內(nèi)描點(diǎn)畫出該拋物線的圖象;

x

y


(3)若該拋物線上兩點(diǎn)A(x1 , y1),B(x2 , y2)的橫坐標(biāo)滿足x1>x2>1,試比較y1與y2的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,請(qǐng)按照要求解答問題.

(1)數(shù)軸上的點(diǎn)C2、3的正中間位置,則點(diǎn)C表示的數(shù)是    ,線段AB的中點(diǎn)D表示的數(shù)是    ;

(2)線段AB的中點(diǎn)D與線段BC的中點(diǎn)E的距離為    ;

(3)在數(shù)軸上方有一點(diǎn)M,下方有一點(diǎn)N,∠ABM=120°,∠CBN=60°,請(qǐng)畫出示意圖,并判斷BC是否平分∠MBN.簡要說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(探究活動(dòng))

1)問題發(fā)現(xiàn):如圖①,直線ABCDEABAD之間的一點(diǎn),連接BE,CE,可以發(fā)現(xiàn)∠B+C=BEC

請(qǐng)把下面的證明過程補(bǔ)充完整:

證明:過點(diǎn)EEFAB,

ABDC(已知),EFAB(輔助線的作法),

EFDC   

∴∠C=CEF.(   

EFAB,∴∠B=BEF(同理),

∴∠B+C=   (等量代換)

即∠B+C=BEC

2)拓展探究:如果點(diǎn)E運(yùn)動(dòng)到圖②所示的位置,其他條件不變,試探究∠B、∠C、∠BEC的數(shù)量關(guān)系并證明;

3)解決問題:如圖③,ABDC,∠C=120°,∠AEC=80°,則∠A=   .(直接寫出結(jié)論,不用寫計(jì)算過程)

查看答案和解析>>

同步練習(xí)冊(cè)答案