【題目】如圖,在7×7網格中,每個小正方形邊長都為1.建立適當的平面直角坐標系,使點A(3,4)、C(4,2).
(1)判斷△ABC的形狀,并求圖中格點△ABC的面積;
(2)在x軸上有一點P,使得PA+PC最小,則PA+PC的最小值為__________.
【答案】(1)直角三角形,面積是5(2)
【解析】
(1)首先根據A和C的坐標確定坐標軸的位置,然后確定B的坐標,再利用勾股定理的逆定理即可作出判斷,再根據直角三角形的面積公式即可求解;
(2)作點C關于x軸的對稱點C′連接AC′交x軸與點P,連接PC,依據軸對稱圖形的性質可得到PC=PC′,然后依據兩點之間線段最短可知當點A,P,C′在一條直線上時,AP+PC有最小值.
(1)如圖,建立直角坐標系,
∴B的坐標是(0,0).
∵AC2=22+12=5,BC2=22+42=20,AB2=42+32=25,
∴AC2+BC2=AB2,
∴△ABC是直角三角形,BC=,AC=
∴S△ABC=BC×AC=××=5;
(2)如圖所示:作點C關于x軸的對稱點C′連接AC′交x軸與點P,連接PC.
∵點C與點C′關于x軸對稱,
∴PC=PC′.
∴AP+PC=AP+PC.
∴當A,P,C′在一條直線上時,AP+PC有最小值,最小值為AC′的長.
∵AC′=.
∴AP+PC的最小值為.
故答案為:.
科目:初中數學 來源: 題型:
【題目】如圖,等腰Rt△ABC中,∠ACB=90°,AC=BC,點D、E分別在邊AB、CB上,CD=DE,∠CDB=∠DEC,過點C作CF⊥DE于點F,交AB于點G,
(1)求證:△ACD≌△BDE;
(2)求證:△CDG為等腰三角形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線y=﹣ x+c與x軸交于點A(3,0),與y軸交于點B,拋物線y=﹣ x2+bx+c經過點A,B.
(1)求點B的坐標和拋物線的解析式;
(2)M(m,0)為x軸上一動點,過點M且垂直于x軸的直線與直線AB及拋物線分別交于點P,N.
①點M在線段OA上運動,若以B,P,N為頂點的三角形與△APM相似,求點M的坐標;
②點M在x軸上自由運動,若三個點M,P,N中恰有一點是其它兩點所連線段的中點(三點重合除外),則稱M,P,N三點為“共諧點”.請直接寫出使得M,P,N三點成為“共諧點”的m的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為響應“學雷鋒、樹新風、做文明中學生”號召,某校開展了志愿者服務活動,活動項目有“戒毒宣傳”、“文明交通崗”、“關愛老人”、“義務植樹”、“社區(qū)服務”等五項,活動期間,隨機抽取了部分學生對志愿者服務情況進行調查,結果發(fā)現,被調查的每名學生都參與了活動,最少的參與了1項,最多的參與了5項,根據調查結果繪制了如圖所示不完整的折線統(tǒng)計圖和扇形統(tǒng)計圖.
(1)被隨機抽取的學生共有多少名?
(2)在扇形統(tǒng)計圖中,求活動數為3項的學生所對應的扇形圓心角的度數,并補全折線統(tǒng)計圖;
(3)該校共有學生2000人,估計其中參與了4項或5項活動的學生共有多少人?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,已知開口向下的拋物線y1=ax2﹣2ax+1過點A(m,1),與y軸交于點C,頂點為B,將拋物線y1繞點C旋轉180°后得到拋物線y2 , 點A,B的對應點分別為點D,E.
(1)直接寫出點A,C,D的坐標;
(2)當四邊形ABCD是矩形時,求a的值及拋物線y2的解析式;
(3)在(2)的條件下,連接DC,線段DC上的動點P從點D出發(fā),以每秒1個單位長度的速度運動到點C停止,在點P運動的過程中,過點P作直線l⊥x軸,將矩形ABDE沿直線l折疊,設矩形折疊后相互重合部分面積為S平方單位,點P的運動時間為t秒,求S與t的函數關系.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,平面直角坐標系中 是原點, 的頂點 的坐標分別是 ,點 把線段 三等分,延長 分別交 于點 ,連接 ,則下列結論:
① 是 的中點;② 與 相似;③四邊形 的面積是 ;④ ;其中正確的結論是 . (填寫所有正確結論的序號)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】假如你的母親開了一家服裝店,專門賣羽絨服,下面是去年一年各月銷售情況表:
月份 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
銷量(件) | 100 | 90 | 50 | 11 | 8 | 6 | 4 | 6 | 5 | 30 | 80 | 110 |
根據上表,回答下列問題:
(1)計算去年各季度的銷售情況,并用一幅適當的統(tǒng)計圖表示;
(2)計算去年各季度銷售量在全年銷售總量中所占的百分比,并用適當的統(tǒng)計圖表示;
(3)從這些統(tǒng)計圖表中,你能得出什么結論?為你母親今后的決策能提供什么有用的幫助?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在菱形ABCD中,E是AB邊上一點,且∠A=∠EDF=60°,有下列結論:①AE=BF;②△DEF是等邊三角形;③△BEF是等腰三角形;④∠ADE=∠BEF,其中結論正確的個數是( 。
A.3
B.4
C.1
D.2
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com