【題目】用適當的方法解下列方程.
(1)(3x+2)2=25
(2)3x2﹣1=4x
(3)(2x+1)2=3(2x+1)
(4)x2﹣7x﹣8=0.
【答案】(1)x=1或x=﹣;(2)x=;(3)x=﹣0.5或x=1;(4)x=8或x=﹣1.
【解析】
(1)利用直接開平方法求解可得;
(2)利用公式法求解可得;
(3)利用因式分解法求解可得;
(4)利用因式分解法求解可得.
解:(1)∵(3x+2)2=25,
∴3x+2=5或3x+2=﹣5,
解得x=1或x=﹣;
(2)∵3x2﹣4x﹣1=0,
∴a=3,b=﹣4,c=﹣1,
則△=(﹣4)2﹣4×3×(﹣1)=28>0,
∴x==;
(3)∵(2x+1)2﹣3(2x+1)=0,
∴(2x+1)(2x﹣2)=0,
則2x+1=0或2x﹣2=0,
解得x=﹣0.5或x=1;
(4)∵x2﹣7x﹣8=0,
∴(x﹣8)(x+1)=0,
則x﹣8=0或x+1=0,
解得x=8或x=﹣1.
科目:初中數學 來源: 題型:
【題目】如圖中,,P是斜邊AC上一個動點,以即為直徑作交BC于點D,與AC的另一個交點E,連接DE.
(1)當時,
①若,求的度數;
②求證;
(2)當,時,
①是含存在點P,使得是等腰三角形,若存在求出所有符合條件的CP的長;
②以D為端點過P作射線DH,作點O關于DE的對稱點Q恰好落在內,則CP的取值范圍為________.(直接寫出結果)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】圖1是某小區(qū)入口實景圖,圖2是該入口抽象成的平面示意圖.已知入口BC寬3.9米,門衛(wèi)室外墻AB上的O點處裝有一盞路燈,點O與地面BC的距離為3.3米,燈臂OM長為1.2米(燈罩長度忽略不計),∠AOM=60°.
(1)求點M到地面的距離;
(2)某搬家公司一輛總寬2.55米,總高3.5米的貨車從該入口進入時,貨車需與護欄CD保持0.65米的安全距離,此時,貨車能否安全通過?若能,請通過計算說明;若不能,請說明理由.(參考數據:1.73,結果精確到0.01米)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小明根據學習函數的經驗,對函數y=+1的圖象與性質進行了探究.下面是小明的探究過程,請補充完整:
(1)函數y=+1的自變量x的取值范圍是 ;
(2)下表列出了y與x的幾組對應值,請寫出m,n的值:m= ,n= ;
x | … | ﹣ | ﹣1 | ﹣ | 0 | 2 | 3 | … | ||||
y | … | m | 0 | ﹣1 | n | 2 | … |
(3)在如圖所示的平面直角坐標系中,描全上表中以各對對應值為坐標的點,并畫出該函數的圖象.
(4)結合函數的圖象,解決問題:
①寫出該函數的一條性質:
②當函數值+1>時,x的取值范圍是:
③方程+1=x的解為:
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某中學為數學實驗“先行示范!,一數學活動小組帶上高度為1.5m的測角儀BC,對建筑物AO進行測量高度的綜合實踐活動,如圖,在BC處測得直立于地面的AO頂點A的仰角為30°,然后前進40m至DE處,測得頂點A的仰角為75°.
(1)求∠CAE的度數;
(2)求AE的長(結果保留根號);
(3)求建筑物AO的高度(精確到個位,參考數據:,).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AC=12cm,BC=16cm,D、E分別是AC、AB的中點,連接DE.點P從點D出發(fā),沿DE方向勻速運動,速度為2cm/s;同時,點Q從點B出發(fā),沿BA方向勻速運動,速度為4cm/s,當點P停止運動時,點Q也停止運動.連接PQ,設運動時間為t(0<t<4)s.解答下列問題:
(1)當t為何值時,以點E、P、Q為頂點的三角形與△ADE相似?
(2)當t為何值時,△EPQ為等腰三角形?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,是矩形內的任意一點,連接、、、, 得到 , , , ,設它們的面積分別是,,,, 給出如下結論:①②③若,則④若,則點在矩形的對角線上.其中正確的結論的序號是( )
A.①②B.②③C.③④D.②④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一個不透明的口袋中有4個大小、質地完全相同的乒乓球,球面上分別標有數-1,2,-3,4.
(1)搖勻后任意摸出1個球,則摸出的乒乓球球面上的數是負數的概率為________.
(2)搖勻后先從中任意摸出1個球(不放回),再從余下的3個球中任意摸出1個球,用列表或畫樹狀圖的方法求兩次摸出的乒乓球球面上的數之和是正數的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數的與的部分對應值如表:
下列結論:拋物線的開口向上;②拋物線的對稱軸為直線;③當時,;④拋物線與軸的兩個交點間的距離是;⑤若是拋物線上兩點,則,其中正確的個數是( )
A.B.C.D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com