精英家教網 > 初中數學 > 題目詳情

【題目】中,的中點,且,,與相交于點,相交于點.

1)求證:

2)若,,求的面積.

【答案】1)見解析;(2

【解析】

1)由DE⊥BC,DBC的中點,根據線段垂直平分線的性質,可得BECE,又由ADAC,易得,,即可證得△ABC∽△FCD;

2)首先過AAH⊥CD,垂足為H,易得△BDE∽△BHA,可求得AH的長,繼而求得△ABC的面積,然后由相似三角形面積比等于相似比的平方,求得△FCD的面積.

1)證明:,

的中點

2)解:過AAHCD,垂足為H

ADAC,

DHCH

BDBH23,

EDBC,

EDAH,

∴△BDE∽△BHA

EDAHBDBH23,

DE3

AH,

∵△ABC∽△FCDBC2CD,

SABC×BC×AH×8×18

SFCDSABC

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】已知:如圖,在ABC中,ABAC,以AB為直徑的⊙OBC于點D,過點DDEAC于點E

1)求證:DE是⊙O的切線.

2)若⊙O的半徑為3cm,∠C30°,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系中,規(guī)定:拋物線的伴隨直線為.例如:拋物線的伴隨直線為,即y=2x1

1)在上面規(guī)定下,拋物線的頂點坐標為   ,伴隨直線為   ,拋物線與其伴隨直線的交點坐標為      ;

2)如圖,頂點在第一象限的拋物線與其伴隨直線相交于點A,B(點A在點B的左側),與x軸交于點C,D

①若∠CAB=90°,求m的值;

②如果點Px,y)是直線BC上方拋物線上的一個動點,PBC的面積記為S,當S取得最大值時,求m的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,四邊形的內接四邊形,,平分,,,則的內心與外心之間的距離為________.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某商場舉辦抽獎活動,規(guī)則如下:在不透明的袋子中有2個紅球和2個黑球,這些球除顏色外都相同,顧客每次摸出一個球,若摸到紅球,則獲得1份獎品,若摸到黑球,則沒有獎品。

1)如果小芳只有一次摸球機會,那么小芳獲得獎品的概率為  ;

2)如果小芳有兩次摸球機會(摸出后不放回),求小芳獲得2份獎品的概率。(請用畫樹狀圖列表等方法寫出分析過程)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在⊙O的內接四邊形ABCD中,∠BCD=120°,AC平分∠BCD.

(1)求證:△ABD是等邊三角形;

(2)若BD=6cm,求⊙O的半徑.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某超市銷售一種成本為40千克的商品,若按50千克銷售,一個月可售出500千克,現打算漲價銷售,據市場調查,漲價x元時,月銷售量為m千克,mx的一次函數,部分數據如下表:

觀察表中數據,直接寫出mx的函數關系式:_______________:當漲價5元時,計算可得月銷售利潤是___________元;

當售價定多少元時,會獲得月銷售最大利潤,求出最大利潤.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】正方形ABCD的邊長為3,E、F分別是AB、BC邊上的點,且EDF=45°.將DAE繞點D逆時針旋轉90°,得到DCM.

1)求證:EF=FM

2)當AE=1時,求EF的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知關于x的一元二次方程x2+(2m+1)x+m22=0

1)若該方程有兩個實數根,求m的最小整數值;

2)若方程的兩個實數根為x1x2,且(x1x2)2+m2=21,求m的值.

查看答案和解析>>

同步練習冊答案