C
分析:由FM平分∠EFD可知:與∠DFM相等的角有∠EFM;由于AB∥CD,EG、EM、FM分別平分∠AEF、∠BEF、∠EFD,根據(jù)平行線的性質(zhì)和判定定理可以推導(dǎo)出FM∥EG,由此可以寫出與∠DFM相等的角.
解答:∵FM平分∠EFD,
∴∠EFM=∠DFM=
∠CFE,
∵EG平分∠AEF,
∴∠AEG=∠GEF=
∠AEF,
∵EM平分∠BEF,
∴∠BEM=∠FEM=
∠BEF,
∴∠GEF+∠FEM=
(∠AEF+∠BEF)=90°,即∠GEM=90°,
∠FEM+∠EFM=
(∠BEF+∠CFE),
∵AB∥CD,
∴∠EGF=∠AEG,∠CFE=∠AEF
∴∠FEM+∠EFM=
(∠BEF+∠CFE)=
(BEF+∠AEF)=90°,
∴在△EMF中,∠EMF=90°,
∴∠GEM=∠EMF,
∴EG∥FM,
∴與∠DFM相等的角有:∠EFM、∠GEF、∠EGF、∠AEG以及∠GEF、∠EGF、∠AEG三個角的對頂角.
故選C.
點評:重點考查了角平分線的定義,平行線的性質(zhì)和判定定理,推導(dǎo)較復(fù)雜.