【題目】如圖,在ABC中,AB=AC,AE是∠BAC的平分線,∠ABC的平分線 BMAE于點(diǎn)M,點(diǎn)OAB上,以點(diǎn)O為圓心,OB的長(zhǎng)為半徑的圓經(jīng)過(guò)點(diǎn)M,交BC于點(diǎn)G,交 AB于點(diǎn)F

1)求證:AE為⊙O的切線.

2)若BC=8,AC=12時(shí),求⊙O的半徑和線段BG的長(zhǎng).

【答案】1)證明見(jiàn)解析;(2)半徑為3,BG=2

【解析】

1)連接OM,由AB=AC、AE平分∠BAC,得到AEBC;利用角平分線的性質(zhì)和等腰三角形的性質(zhì),得到OMBC;再利用平行線的性質(zhì)得到AEOM,即可證得AE為⊙O的切線.

2)設(shè)O的半徑為R,根據(jù)OMBE,得到OMA∽△BEA,利用相似三角形的性質(zhì)得到,即,解得R=3,從而求得O的半徑;過(guò)點(diǎn)OOHBG于點(diǎn)H,則BG=2BH,根據(jù)∠OME=MEH=EHO=90°,得到四邊形OMEH是矩形,從而得到HE=OM=3BH=1,證得結(jié)論BG=2BH=2

1)證明:如圖,連接OM

AB=AC,AE平分∠BAC,

AEBC,

OB=OM,

∴∠OBM=OMB,

BM平分∠ABC

∴∠OBM=CBM,

∴∠OMB=CBM,

OMBC,

又∵AEBC,

AEOM,

AE是⊙O的切線;

2)解:設(shè)⊙O的半徑為R

BC=8,

BE=BC=4,

OMBE,

∴△OMA∽△BEA

,

,

解得:R=3,

∴⊙O的半徑為3;

如圖,過(guò)點(diǎn)OOHBG于點(diǎn)H

BG2BH

∵∠OME=∠MEH=∠EHO90°,

∴四邊形OMEH是矩形,

HEOM3,

BHBE-HE=BC - HE =4-3=1,

BG2BH2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線向上平移2個(gè)單位,得到直線,直線與雙曲線的一個(gè)交點(diǎn)的縱坐標(biāo)為

1)求的值;

2)當(dāng)時(shí),求的取值范圍;

3)直線與雙曲線的另一個(gè)交點(diǎn)為,求坐標(biāo)原點(diǎn)到線段的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了培養(yǎng)學(xué)生的閱讀習(xí)慣,某校開(kāi)展了“讀好書(shū),助成長(zhǎng)”系列活動(dòng),并準(zhǔn)備購(gòu)置一批圖書(shū),購(gòu)書(shū)前,對(duì)學(xué)生喜歡閱讀的圖書(shū)類型進(jìn)行了抽樣調(diào)查,并將調(diào)查數(shù)據(jù)繪制成兩幅不完整的統(tǒng)計(jì)圖.根據(jù)統(tǒng)計(jì)圖所提供的信息,回答下列問(wèn)題:

1)本次調(diào)查共抽查了 名學(xué)生,統(tǒng)計(jì)圖中的 ,

2)已知該校共有960名學(xué)生,請(qǐng)估計(jì)該校喜歡閱讀“”類圖書(shū)的學(xué)生約有多少人?

3)學(xué)校要舉辦讀書(shū)知識(shí)競(jìng)賽,七年級(jí)(1)班要在班級(jí)優(yōu)勝者21女中隨機(jī)選送2人參賽,求選送的兩名參賽同學(xué)為11女的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是半圓O的直徑,且AB6cm,點(diǎn)C為半圓上的一點(diǎn),將此半圓沿BC所在的直線折疊,若圓弧BC恰好過(guò)圓心O,則圖中陰影部分的面積是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了了解市民“獲取新聞的最主要途徑”,某市記者開(kāi)展了一次抽樣調(diào)查,根據(jù)調(diào)查結(jié)果繪制了如下尚不完整的統(tǒng)計(jì)圖.

根據(jù)以上信息解答下列問(wèn)題:

(1)這次抽樣調(diào)查的樣本容量是 ;

(2)通過(guò)“電視”了解新聞的人數(shù)占被調(diào)查人數(shù)的百分比為 ;扇形統(tǒng)計(jì)圖中, “手機(jī)上網(wǎng)”所對(duì)應(yīng)的圓心角的度數(shù)是

(3)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;

(4)若該市約有70萬(wàn)人,請(qǐng)你估計(jì)其中將“電腦和手機(jī)上網(wǎng)”作為“獲取新聞的最主要途徑”的總?cè)藬?shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法正確的是( 。

A.為了解一批電池的使用壽命,應(yīng)采用全面調(diào)查的方式

B.數(shù)據(jù),...,的平均數(shù)是,方差是,則數(shù)據(jù),,...,的平均數(shù)是,方差是

C.通過(guò)對(duì)甲、乙兩組學(xué)生數(shù)學(xué)成績(jī)的跟蹤調(diào)查,整理計(jì)算得到甲、乙兩組數(shù)據(jù)的方差為,,則乙數(shù)據(jù)較為穩(wěn)定

D.為了解官渡區(qū)九年級(jí)多名學(xué)生的視力情況,從中隨機(jī)選取名學(xué)生的視力情況進(jìn)行分析,則選取的樣本容量為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,的直徑,的切線,連結(jié),過(guò)點(diǎn)于點(diǎn),延長(zhǎng),交于點(diǎn)

1)求證:的切線;

2)若,,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線Cyax22ax+3開(kāi)口向下.

1)當(dāng)拋物線C過(guò)點(diǎn)(1,4)時(shí),求a的值和拋物線與y軸的交點(diǎn)坐標(biāo);

2)求二次函數(shù)yax22ax+3的對(duì)稱軸和最大值(用含a的式子表示);

3)將拋物線C向左平移a個(gè)單位得到拋物線C1,隨著a的變化,拋物線C1頂點(diǎn)的縱坐標(biāo)y與橫坐標(biāo)x之間存在一個(gè)函數(shù)關(guān)系,求這個(gè)函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;

4)記(3)所求的函數(shù)為D,拋物線C與函數(shù)D的圖象交于點(diǎn)M,結(jié)合圖象,請(qǐng)直接寫(xiě)出點(diǎn)M的縱坐標(biāo)的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,拋物線與拋物線相交y軸于點(diǎn)C,拋物線x軸交于AB兩點(diǎn)(點(diǎn)B在點(diǎn)A的右側(cè)),直線x軸負(fù)半軸于點(diǎn)N,交y軸于點(diǎn)M,且

1)求拋物線的解析式與k的值;

2)拋物線的對(duì)稱軸交x軸于點(diǎn)D,連接,在x軸上方的對(duì)稱軸上找一點(diǎn)E,使以點(diǎn)AD,E為頂點(diǎn)的三角形與相似,求出的長(zhǎng);

3)如圖2,過(guò)拋物線上的動(dòng)點(diǎn)G軸于點(diǎn)H,交直線于點(diǎn)Q,若點(diǎn)是點(diǎn)Q關(guān)于直線的對(duì)稱點(diǎn),是否存在點(diǎn)G(不與點(diǎn)C重合),使點(diǎn)落在y軸上?若存在,請(qǐng)直接寫(xiě)出點(diǎn)G的橫坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案