如圖,將矩形ABCD沿直線EF折疊,使點(diǎn)C與點(diǎn)A重合,折痕交AD于點(diǎn)E,交BC于點(diǎn)F,連接AF,設(shè)AE=a,ED=b,DC=c,則下列關(guān)于a,b,c的關(guān)系式正確的是( 。
A.a(chǎn)=b+cB.a(chǎn)+b=2cC.a(chǎn)2+c2=4b2D.a(chǎn)2﹣b2=c2
D.

試題分析:本題考查的是翻折變換,涉及到矩形的性質(zhì)、勾股定理等知識(shí).此題難度適中,注意掌握數(shù)形結(jié)合思想的應(yīng)用,注意折疊中的對(duì)應(yīng)關(guān)系.∵四邊形C′D′EF由四邊形CDEF折疊而成,∴CE=AE,∵四邊形ABCD是矩形,∴∠D=90°,∵AE=a,ED=b,DC=c,∴CE=AE=a,在Rt△DCE中,CE2=CD2+DE2,∴a、b、c三者之間的數(shù)量關(guān)系式為:a2=b2+c2,即a2-b2=c2.故選D.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,已知線段AB=10,AC=BD=2,點(diǎn)P是CD上一動(dòng)點(diǎn),分別以AP、PB為邊向上、向下作正方形APEF和PHKB,設(shè)正方形對(duì)角線的交點(diǎn)分別為O1、O2,當(dāng)點(diǎn)P從點(diǎn)C運(yùn)動(dòng)到點(diǎn)D時(shí),線段O1O2中點(diǎn)G的運(yùn)動(dòng)路徑的長是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在直角梯形ABCD中,∠B=90°,AD∥BC,且AD=4cm,AB=6cm,DC=10cm.若動(dòng)點(diǎn)P從A點(diǎn)出發(fā),以每秒4cm的速度沿線段AD、DC向C點(diǎn)運(yùn)動(dòng);動(dòng)點(diǎn)Q從C點(diǎn)出發(fā)以每秒5cm的速度沿CB向B點(diǎn)運(yùn)動(dòng).當(dāng)Q點(diǎn)到達(dá)B點(diǎn)時(shí),動(dòng)點(diǎn)P、Q同時(shí)停止運(yùn)動(dòng).設(shè)點(diǎn)P、Q同時(shí)出發(fā),并運(yùn)動(dòng)了t秒,

(1)直角梯形ABCD的面積為             cm2.
(2)當(dāng)t=     秒時(shí),四邊形PQCD成為平行四邊形?
(3)當(dāng)t=     秒時(shí),AQ=DC;
(4)是否存在t,使得P點(diǎn)在線段DC上且PQ⊥DC?若存在,求出此時(shí)t的值,若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,矩形ABCD的對(duì)角線相交于點(diǎn)O,DE∥CA,AE∥BD.

(1)求證:四邊形AODE是菱形;
(2)若將題設(shè)中“矩形ABCD”這一條件改為“菱形ABCD”,其余條件不變,則四邊形AODE的形狀是什么?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,點(diǎn)E、F分別是ABCD的邊BC、AD上的點(diǎn),且BE=DF.

(1)求證:四邊形AECF是平行四邊形;
(2)若AE=BE,∠BAC=90°,試判斷四邊形AECF的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

順次連結(jié)等腰梯形各邊中點(diǎn)所得的四邊形是(    ).
A.矩形B.菱形C.正方形D.等腰梯形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

順次連接四邊形ABCD各邊中點(diǎn),得到四邊形EFGH ,要使四邊形EFGH是矩形,應(yīng)添加的條件是(   )
A.AD∥BCB.AC= BDC.AC⊥BDD.AD=AB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

給出下列命題:①四條邊相等的四邊形是正方形;②兩組鄰邊分別相等的四邊形是平行四邊形;③有一個(gè)角是直角的平行四邊形是矩形;④兩條對(duì)角線互相垂直且平分的四邊形是菱形.其中錯(cuò)誤命題的個(gè)數(shù)是(   )
A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在正方形ABCD中,以BC為邊在正方形外部作等邊三角形BCE,連結(jié)DE,則∠CDE的度數(shù)為      °.

查看答案和解析>>

同步練習(xí)冊答案