【題目】如圖,Rt△AOB的一條直角邊OB在x軸上,雙曲線y=經(jīng)過(guò)斜邊OA的中點(diǎn)C,與另一直角邊交于點(diǎn)D.若S△OCD=9,則S△OBD的值為 .
【答案】6
【解析】
試題分析:過(guò)雙曲線上任意一點(diǎn)與原點(diǎn)所連的線段、坐標(biāo)軸、向坐標(biāo)軸作垂線所圍成的直角三角形面積S是個(gè)定值,即S=|k|.
解:如圖,過(guò)C點(diǎn)作CE⊥x軸,垂足為E.
∵Rt△OAB中,∠OBA=90°,
∴CE∥AB,
∵C為Rt△OAB斜邊OA的中點(diǎn)C,
∴CE為Rt△OAB的中位線,
∵△OEC∽△OBA,
∴=.
∵雙曲線的解析式是y=,即xy=k
∴S△BOD=S△COE=|k|,
∴S△AOB=4S△COE=2|k|,
由S△AOB﹣S△BOD=S△AOD=2S△DOC=18,得2k﹣k=18,
k=12,
S△BOD=S△COE=k=6,
故答案為:6.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=3x的圖象與反比例函數(shù)的圖象的一個(gè)交點(diǎn)為A(1,m).
(1)求反比例函數(shù)的解析式;
(2)若點(diǎn)P在直線OA上,且滿足PA=2OA,直接寫(xiě)出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知如圖,在△ABC中,AB=BC=4,∠ABC=90°,M是AC的中點(diǎn),點(diǎn)N在AB上(不同于A、B),將△ANM繞點(diǎn)M逆時(shí)針旋轉(zhuǎn)90°得△A1PM.
(1)畫(huà)出△A1PM
(2)設(shè)AN=x,四邊形NMCP的面積為y,直接寫(xiě)出y關(guān)于x的函數(shù)關(guān)系式,并求y的最大或最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=x2﹣x﹣與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,對(duì)稱軸與x軸交于點(diǎn)D,點(diǎn)E(4,n)在拋物線上.
(1)求直線AE的解析式;
(2)點(diǎn)P為直線CE下方拋物線上的一點(diǎn),連接PC,PE.當(dāng)△PCE的面積最大時(shí),連接CD,CB,點(diǎn)K是線段CB的中點(diǎn),點(diǎn)M是CP上的一點(diǎn),點(diǎn)N是CD上的一點(diǎn),求KM+MN+NK的最小值;
(3)點(diǎn)G是線段CE的中點(diǎn),將拋物線y=x2﹣x﹣沿x軸正方向平移得到新拋物線y′,y′經(jīng)過(guò)點(diǎn)D,y′的頂點(diǎn)為點(diǎn)F.在新拋物線y′的對(duì)稱軸上,是否存在一點(diǎn)Q,使得△FGQ為等腰三角形?若存在,直接寫(xiě)出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一個(gè)紙箱中,裝有紅色、黃色、白色的塑料球共200個(gè)這些小球除顏色外其他都完全相同,將球充分搖勻后,從中隨機(jī)摸出一個(gè)球,記下它的顏色后再放回箱中,不斷重復(fù)這一過(guò)程,小明發(fā)現(xiàn)其中摸到白色球、黃色球的頻率分別穩(wěn)定在15%和45%,則這個(gè)紙箱中紅色球的個(gè)數(shù)可能有( )
A. 30個(gè) B. 80個(gè) C. 90個(gè) D. 120個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC中,∠ACB=900,AC=BC,直線MN經(jīng)過(guò)點(diǎn)C,且AD⊥MN于D,BE⊥MN于E.
當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖1的位置時(shí),求證: ≌△CBE;②DE=AD+BE;
當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖2的位置時(shí),中的結(jié)論還成立嗎?若成立,請(qǐng)給出證明;若不成立,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】目前我市“校園手機(jī)”現(xiàn)象越來(lái)越受到社會(huì)關(guān)注,針對(duì)這種現(xiàn)象,我市某中學(xué)九年級(jí)數(shù)學(xué)興趣小組的同學(xué)隨機(jī)調(diào)查了學(xué)校若干名家長(zhǎng)對(duì)“中學(xué)生帶手機(jī)”現(xiàn)象的看法,統(tǒng)計(jì)整理并制作了如下的統(tǒng)計(jì)圖:
(1)這次調(diào)查的家長(zhǎng)總數(shù)為________人.家長(zhǎng)表示“不贊同”的人數(shù)為________人;
(2)請(qǐng)?jiān)趫D①中把條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)從這次接受調(diào)查的家長(zhǎng)中隨機(jī)抽查一個(gè),恰好是“贊同”的家長(zhǎng)的概率是________;
(4)求圖②中表示家長(zhǎng)“無(wú)所謂”的扇形圓心角的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(10分) 如圖,小明把一張邊長(zhǎng)為厘米的正方形硬紙板的四周各剪去一個(gè)同樣大小的正方形,再折合成一個(gè)無(wú)蓋的長(zhǎng)方體盒子,
(1)如果要求長(zhǎng)方體盒子的底面面積為,求剪去的小正方形邊長(zhǎng)為多少?
(2)長(zhǎng)方體盒子的側(cè)面積是否可能為?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,二次函數(shù)y=﹣+bx+c的圖象經(jīng)過(guò)點(diǎn)A(1,0),且當(dāng)x=0和x=5時(shí)所對(duì)應(yīng)的函數(shù)值相等.一次函數(shù)y=﹣x+3與二次函數(shù)y=﹣+bx+c的圖象分別交于B,C兩點(diǎn),點(diǎn)B在第一象限.
(1)求二次函數(shù)y=﹣+bx+c的表達(dá)式;
(2)連接AB,求AB的長(zhǎng);
(3)連接AC,M是線段AC的中點(diǎn),將點(diǎn)B繞點(diǎn)M旋轉(zhuǎn)180°得到點(diǎn)N,連接AN,CN,判斷四邊形ABCN的形狀,并證明你的結(jié)論.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com