已知:拋物線y=ax2+bx+c經(jīng)過A(1,0)、B(5,0)兩點,最高點的縱坐標為4,與y軸交于點C.
(1)求該拋物線的解析式;
(2)若△ABC的外接圓⊙O′交y軸不同于點c的點D′,⊙O′的弦DE平行于x軸,求直線CE的解析式;
(3)在x軸上是否存在點F,使△OCF與△CDE相似?若存在,求出所有符合條件的點F的坐標,并判定直線CF與⊙O’的位置關系(要求寫出判斷根據(jù));若不存在,請說明理由.
分析:(1)根據(jù)A、B兩點的坐標即可得出拋物線的對稱軸解析式,也就可得出拋物線頂點的坐標,然后根據(jù)頂點、A、B這三個點的坐標即可求出的拋物線的解析式.
(2)本題的關鍵是求出E點的坐標,根據(jù)圓的對稱性可知,D與E關于拋物線的對稱軸對稱.因此只需求出D點的坐標即可得出E點的坐標,那么首先要求出OD的長,已知了OA、OB、OC的長,可根據(jù)切割線定理求出OD的長,進而可得出D、E點的坐標,然后可根據(jù)C、E的坐標用待定系數(shù)法求出直線CE的函數(shù)解析式.
(3)求F點的坐標要分類進行討論:
①當∠CED=∠CFO,即△CDE∽△COF,由于DE∥x軸,因此直線CE與x軸的交點就滿足F點的條件,設此點為F1,F(xiàn)1關于y軸的對稱點F2也符合這樣的條件.
②當∠CFO=∠DCE時,即△CDE∽△FOC,可根據(jù)相似三角形得出的對應成比例線段求出OF的長,即可得出F點的坐標.(同①一樣y軸左右各有一個符合條件的F點)
如圖:可過O′作CF3的垂線設垂足為H,由于∠HCO′是銳角,因此O′H<O′C,所以CF3與圓O′的相交,同理可得出CF1,DF4也與圓O′相交.由于∠F4CO=∠CED,而∠CED+∠DCE=90°,那么∠F4CE=90°,因此只要CF4與圓O′相切,CF1,CF2,CF3都與圓相交.
解答:(1)解:由對稱性可知拋物線的最高點的橫坐標是3,所以拋物線的最高點坐標為(3,4)
a+b+c=0
25a+5b+c=0
9a+3b+c=4

解得
a=-1
b=6
c=-5

所以拋物線解析式為y=-x2+6x-5.

(2)如圖,∵C(0,-5),
∴OC=5,精英家教網(wǎng)
∵OA•OB=OD•OC,
∴1×5=OD×5
∴OD=1
∵直線x=3垂直平分DE,
∴DE=6.
∵DE∥x軸,
∴E(6,-1)
設直線CE的解析式為y=kx+b.
-1=6k+b
b=-5

解得
k=
2
3
b=-5

故直線CE解析式為y=
2
3
x-5.

(3)假設存在點F,使△CDE與△COF相似.
∵DE∥AB,
∴∠CDE=90°
∵∠COF=90°
∵∠CDE=∠COF∴△DCE∽△COF或△CDE∽△FOC
當△CDE∽△COF時,
DE
OF
=
CD
OC
,所以OF=
15
2

當△CDE∽△FOC時,
DE
OC
=
CD
OF
,所以OF=
10
3

所以存在點F,使△CDE與△COF相似.其坐標為F1
15
2
,0),F(xiàn)2(-
15
2
,0)
F3
10
3
,0),F(xiàn)4(-
10
3
,0)
∵∠OCF4=∠CED,
∴∠ECF4=90°
所以直線CF4與⊙O'相切
∵∠CDE=90°
∴直線CF1經(jīng)過圓心O′,
∴直線CF1與⊙O'相交,
∴點F3在線段OB上
∴∠F3CE為銳角,做OH'⊥CF3,垂足為H,所以O′H<O′C.
∴直線CF3與⊙O′相交,同理直線CF2與⊙O′相交.
故直線CF4與⊙O′相切,直線CF1、CF2、CF3都與⊙O′相交.
點評:本題主要考查了一次函數(shù)與二次函數(shù)解析式的確定、相似三角形的判定和性質、直線與圓的位置關系等知識點.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知:拋物線y=x2-(a+b)x+
c2
4
,其中a、b、c是△ABC的∠A、∠B、∠C的對邊.
(1)求證:拋物線與x軸必有兩個不同交點;
(2)設直線y=ax-bc與拋物線交于E、F兩點,與y軸交于點M,拋物線與y軸交于點N,若拋物線的對稱軸為x=a,△MNE與△MNF的面積比為5:1,求證:△ABC是等邊三角形;
(3)在(2)的條件下,設△ABC的面積為
3
,拋物線與x軸交于點P、Q,問是否精英家教網(wǎng)存在過P、Q兩點且與y軸相切的圓?若存在,求出圓的圓心坐標,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:拋物線y=ax2+bx+c(a≠0)的圖象經(jīng)過點(1,0),一條直線y=ax+b,它們的系數(shù)之間滿足如下關系:a>b>c.
(1)求證:拋物線與直線一定有兩個不同的交點;
(2)設拋物線與直線的兩個交點為A、B,過A、B分別作x軸的垂線,垂足分別為A1、B1.令k=
c
a
,試問:是否存在實數(shù)k,使線段A1B1的長為4
2
.如果存在,求出k的值;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•貴陽)已知:直線y=ax+b過拋物線y=-x2-2x+3的頂點P,如圖所示.
(1)頂點P的坐標是
(-1,4)
(-1,4)

(2)若直線y=ax+b經(jīng)過另一點A(0,11),求出該直線的表達式;
(3)在(2)的條件下,若有一條直線y=mx+n與直線y=ax+b關于x軸成軸對稱,求直線y=mx+n與拋物線y=-x2-2x+3的交點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知:拋物線數(shù)學公式,其中a、b、c是△ABC的∠A、∠B、∠C的對邊.
(1)求證:拋物線與x軸必有兩個不同交點;
(2)設直線y=ax-bc與拋物線交于E、F兩點,與y軸交于點M,拋物線與y軸交于點N,若拋物線的對稱軸為x=a,△MNE與△MNF的面積比為5:1,求證:△ABC是等邊三角形;
(3)在(2)的條件下,設△ABC的面積為數(shù)學公式,拋物線與x軸交于點P、Q,問是否存在過P、Q兩點且與y軸相切的圓?若存在,求出圓的圓心坐標,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年四川省綿陽市南山中學自主招生考試數(shù)學試卷(解析版) 題型:解答題

已知:拋物線,其中a、b、c是△ABC的∠A、∠B、∠C的對邊.
(1)求證:拋物線與x軸必有兩個不同交點;
(2)設直線y=ax-bc與拋物線交于E、F兩點,與y軸交于點M,拋物線與y軸交于點N,若拋物線的對稱軸為x=a,△MNE與△MNF的面積比為5:1,求證:△ABC是等邊三角形;
(3)在(2)的條件下,設△ABC的面積為,拋物線與x軸交于點P、Q,問是否存在過P、Q兩點且與y軸相切的圓?若存在,求出圓的圓心坐標,若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案