【題目】解方程:2(x﹣1)﹣2=4x
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在菱形ABCD中,點(diǎn)E,O,F(xiàn)分別為AB,AC,AD的中點(diǎn),連接CE,CF,OE,OF.
(1)求證:△BCE≌△DCF;
(2)當(dāng)AB與BC滿足什么關(guān)系時(shí),四邊形AEOF是正方形?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,若點(diǎn)A(a,1)在第二象限,則點(diǎn)B(﹣a,0)在( )
A.x軸正半軸上B.x軸負(fù)半軸上C.y軸正半軸上D.y軸負(fù)半軸上
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】完成下面的證明.
已知,如圖所示,BCE,AFE是直線,
AB∥CD,∠1=∠2,∠3=∠4.
求證:AD∥BE
證明:∵ AB∥CD (已知)
∴ ∠4 =∠ ( )
∵ ∠3 =∠4 (已知)
∴ ∠3 =∠ ( )
∵ ∠1 =∠2 (已知)
∴ ∠1+∠CAF =∠2+ ∠CAF ( )
即:∠ =∠ .
∴ ∠3 =∠ ( )
∴ AD∥BE ( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】A為數(shù)軸上表示2的點(diǎn),將點(diǎn)A沿?cái)?shù)軸向左平移5個(gè)單位到點(diǎn)B,則點(diǎn)B所表示的數(shù)的絕對(duì)值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB=AC,CF⊥AB于F,BE⊥AC于E,CF與BE交于點(diǎn)D.有下列結(jié)論:
①△ABE≌△ACF;②△BDF≌△CDE;③點(diǎn)D在∠BAC的平分線上;④點(diǎn)C在AB的中垂線上.
以上結(jié)論正確的有( )個(gè).
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖,∠A=∠D=90°,BE平分∠ABC,且點(diǎn)E是AD的中點(diǎn),求證:BC=AB+CD.
(2)如圖,△ACB和△ECD都是等邊三角形,點(diǎn)A、D、E在同一直線上,連接BE.
①求證:AD=BE;
②求∠AEB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先閱讀理解下面的例題,再按要求解答下列問題:
例題:求代數(shù)式y2+4y+8的最小值.
解:y2+4y+8=y2+4y+4+4=(y+2)2+4
∵(y+2)2≥0
∴(y+2)2+4≥4
∴y2+4y+8的最小值是4.
(1)求代數(shù)式m2+m+4的最小值;
(2)求代數(shù)式4﹣x2+2x的最大值;
(3)某居民小區(qū)要在一塊一邊靠墻(墻長(zhǎng)15m)的空地上建一個(gè)長(zhǎng)方形花園ABCD,花園一邊靠墻,另三邊用總長(zhǎng)為20m的柵欄圍成.如圖,設(shè)AB=x(m),請(qǐng)問:當(dāng)x取何值時(shí),花園的面積最大?最大面積是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com