如圖,D是△ABC的BC邊上一點(diǎn)且CD=AB,∠BDA=∠BAD,AE是△ABD的中線.
求證:∠C=∠BAE.

證明:延長(zhǎng)AE到F,使EF=AE,連接DF,
∵AE是△ABD的中線
∴BE=ED,
在△ABE與△FDE中
,
∴△ABE≌△FDE(SAS),
∴AB=DF,∠BAE=∠EFD,
∵∠ADB是△ADC的外角,
∴∠DAC+∠ACD=∠ADB=∠BAD,
∴∠BAE+∠EAD=∠BAD,∠BAE=∠EFD,
∴∠EFD+∠EAD=∠DAC+∠ACD,
∴∠ADF=∠ADC,
∵AB=DC,∴DF=DC,
在△ADF與△ADC中
,
∴△ADF≌△ADC(SAS)
∴∠C=∠AFD=∠BAE.
分析:延長(zhǎng)AE到F,使EF=AE,連接DF,可證明△ABE≌△FDE,則∠BAE=∠EFD,∠B=∠EDF,再由外角的性質(zhì)得出∠ADF=∠ADC,則△ADF≌△ADC(SAS),則∠AFD=∠C,從而得出∠C=∠BAE.
點(diǎn)評(píng):本題考查了全等三角形的判定和性質(zhì),解題的關(guān)鍵是證明兩個(gè)三角形全等.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,AD是△ABC的中線,∠ADC=60°,點(diǎn)C′與點(diǎn)C關(guān)于直線AD對(duì)稱(chēng),若BC=6cm,則點(diǎn)B與點(diǎn)C′之間的距離為
 
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,⊙O是△ABC的外接圓,已知∠B=62°,則∠CAO的度數(shù)是( 。
A、28°B、30°C、31°D、62°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

15、如圖,AD是△ABC的角平分線,∠B=60°,E,F(xiàn)分別在AC、AB上,且AE=AF,∠CDE=∠BAC,那么,圖中長(zhǎng)度一定與DE相等的線段共有
3
條.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,⊙O是△ABC的外接圓,AB是直徑,若∠B=50°,則∠A等于( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,AD是△ABC的外接圓直徑,AD=
2
,∠B=∠DAC,則AC的值為
1
1

查看答案和解析>>

同步練習(xí)冊(cè)答案