【題目】八班組織了一次經(jīng)典朗讀比賽,甲、乙兩隊(duì)各人的比賽成績(jī)?nèi)缦卤恚?/span>分制):
甲 | ||||||||||
乙 |
①甲隊(duì)成績(jī)的中位數(shù)是________分,乙隊(duì)成績(jī)的眾數(shù)是________分;
②計(jì)算乙隊(duì)的平均成績(jī)和方差.
【答案】9.510
【解析】
試題(1)將甲的成績(jī)按從小到大的順序排列,中位數(shù)是第56個(gè)數(shù)據(jù)9,10的平均數(shù)9.5,眾數(shù)是出現(xiàn)次數(shù)最多的10;(2)利用平均數(shù)和方差的公式計(jì)算即可.
試題解析:解:(1)9.5,10 (2分)
(2)乙隊(duì)的平均成績(jī)是:(10×4+8×2+7+9×3)=9,(4分)
則方差是:=[4×(10﹣9)2+2×(8﹣9)2+(7﹣9)2+3×(9﹣9)2]=1;(7分)
∵甲隊(duì)成績(jī)的方差是1.4,乙隊(duì)成績(jī)的方差是1
∴成績(jī)較為整齊的是乙隊(duì) (8分)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:若一個(gè)三角形中,其中有一個(gè)內(nèi)角是另外一個(gè)內(nèi)角的一半,則這樣的三角形叫做“半角三角形”. 例如:等腰直角三角形就是“半角三角形”.在鈍角三角形中,,,,過(guò)點(diǎn)的直線(xiàn)交邊于點(diǎn).點(diǎn)在直線(xiàn)上,且.
(1)若,點(diǎn)在延長(zhǎng)線(xiàn)上.
① 當(dāng),點(diǎn)恰好為中點(diǎn)時(shí),依據(jù)題意補(bǔ)全圖1.請(qǐng)寫(xiě)出圖中的一個(gè)“半角三角形”:_______;
② 如圖2,若,圖中是否存在“半角三角形”(△除外),若存在,請(qǐng)寫(xiě)出圖中的“半角三角形”,并證明;若不存在,請(qǐng)說(shuō)明理由;
(2)如圖3,若,保持的度數(shù)與(1)中②的結(jié)論相同,請(qǐng)直接寫(xiě)出,, 滿(mǎn)足的數(shù)量關(guān)系:______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙、丙、丁4名同學(xué)進(jìn)行一次羽毛球單打比賽,要從中選2名同學(xué)打第一場(chǎng)比賽,求下列事件的概率。
(1)已確定甲打第一場(chǎng),再?gòu)钠溆?名同學(xué)中隨機(jī)選取1名,恰好選中乙同學(xué);
(2)隨機(jī)選取2名同學(xué),其中有乙同學(xué).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線(xiàn)的頂點(diǎn)為A(1,4),拋物線(xiàn)與y軸交于點(diǎn)B(0,3),與x軸交于C、D兩點(diǎn).點(diǎn)P是x軸上的一個(gè)動(dòng)點(diǎn).
(1)求此拋物線(xiàn)的解析式;
(2)當(dāng)PA+PB的值最小時(shí),求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,AB⊥BC,DC⊥BC,B、C分別是垂足,DE交AC于M,BC=CD,AB=EC,DE與AC有什么關(guān)系?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=(m+1)x+的圖象與x軸的負(fù)半軸相交于點(diǎn)A,與y軸相交于點(diǎn)B,且△OAB的面積為.
(1)求m的值及點(diǎn)A的坐標(biāo);
(2)過(guò)點(diǎn)B作直線(xiàn)BP與x軸的正半軸相交于點(diǎn)P,且OP=3OA,求直線(xiàn)BP的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】建立模型:如圖1,已知△ABC,AC=BC,∠C=90°,頂點(diǎn)C在直線(xiàn)l上.
(1)操作:
過(guò)點(diǎn)A作AD⊥于點(diǎn)D,過(guò)點(diǎn)B作BE⊥于點(diǎn)E.求證:△CAD≌△BCE.
(2)模型應(yīng)用:
①如圖2,在直角坐標(biāo)系中,直線(xiàn):與y軸交于點(diǎn)A,與x軸交于點(diǎn)B,將直線(xiàn)繞著點(diǎn)A順時(shí)針旋轉(zhuǎn)45°得到直線(xiàn).求直線(xiàn)的函數(shù)表達(dá)式.
②如圖3,在直角坐標(biāo)系中,點(diǎn)B(4,3),作BA⊥y軸于點(diǎn)A,作BC⊥x軸于點(diǎn)C,P是直線(xiàn)BC上的一個(gè)動(dòng)點(diǎn),點(diǎn)Q(a,5a﹣2)位于第一象限內(nèi).問(wèn)點(diǎn)A、P、Q能否構(gòu)成以點(diǎn)Q為直角頂點(diǎn)的等腰直角三角形,若能,請(qǐng)求出此時(shí)a的值,若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題背景:在△ABC中,AB、BC、AC三邊的長(zhǎng)分別為、、,求這個(gè)三角形的面積小輝同學(xué)在解答這道題時(shí),先建立一個(gè)正方形網(wǎng)格(每個(gè)小正方形的邊長(zhǎng)為1),再在網(wǎng)格中畫(huà)出格點(diǎn)△ABC(即△ABC三個(gè)頂點(diǎn)都在小正方形的頂點(diǎn)處),如圖1所示.這樣不需求△ABC的高,而借用網(wǎng)格就能計(jì)算出它的面積.
(1)請(qǐng)你利用上述方法求出△ABC的面積.
(2)在圖2中畫(huà)△DEF,DE、EF、DF三邊的長(zhǎng)分別為、、
①判斷三角形的形狀,說(shuō)明理由.
②求這個(gè)三角形的面積.(直接寫(xiě)出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于的一元二次方程.
(1)試證明:無(wú)論取何值此方程總有兩個(gè)實(shí)數(shù)根;
(2)若原方程的兩根,滿(mǎn)足,求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com