兩個相似三角形的面積比是,則它們的周長比是_______.
:3.

試題分析:根據相似三角形面積的比等于相似比的平方求出相似比,再根據相似三角形的周長的比等于相似比解答.
∵兩個相似三角形的面積比是5:9,
∴它們的相似比是:3,
∴它們的周長比是:3.
故答案為::3.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平行四邊形中,過點,垂足為點,連接為線段上一點,且

(1)求證:;
(2)若,,,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖①,已知線段AB=8,以AB為直徑作半圓O,再以OA為直徑作半圓C,P是半圓C上的一個動點(P與點A,O不重合),AP的延長線交半圓O于點D。

(1)判斷線段AP與PD的大小關系,并說明理由;
(2)連接PC,當∠ACP=600時,求弧AD的長;
(3)過點D作DE⊥AB,垂足為E(如圖②),設AP=x,OE=y,求y與x之間的函數(shù)關系式,并寫出x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

閱讀材料

如圖①,△ABC與△DEF都是等腰直角三角形,ACB=∠EDF=90°,且點D在AB邊上,AB、EF的中點均為O,連結BF、CD、CO,顯然點C、F、O在同一條直線上,可以證明△BOF≌△COD,則BF=CD.解決問題:
(1)將圖①中的Rt△DEF繞點O旋轉得到圖②,猜想此時線段BF與CD的數(shù)量關系,并證明你的結論;
(2)如圖③,若△ABC與△DEF都是等邊三角形,AB、EF的中點均為O,上述(1)中的結論仍然成立嗎?如果成立,請說明理由;如不成立,請求出BF與CD之間的數(shù)量關系;
(3)如圖④,若△ABC與△DEF都是等腰三角形,AB、EF的中點均為0,且頂角∠ACB=∠EDF=α,請直接寫出的值(用含α的式子表示出來)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,△ABC中,AD⊥BC于D,且有下列條件:(1)∠B+∠DAC=90°;(2)∠B=∠DAC;(3);(4)AB2=BD·BC其中一定能夠判定△ABC是直角三角形的共有( 。
A.3個B.2個C.1個D.0個

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,小明同學用自制的直角三角形紙板DEF測量樹的高度AB,他調整自己的位置,設法使斜邊DF保持水平,并且邊DE與點B在同一直線上.已知紙板的兩條直角邊DF=50cm,EF=30cm,測得邊DF離地面的高度AC=1.5m,CD=20m,則樹高AB為(   )
A.12mB.13.5m C.15mD.16.5m

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

下列四組線段中,是成比例線段的是(  )
A.5cm,6cm,7cm,8cmB.3cm,6cm,2cm,5cm
C.2cm,4cm,6cm,8cmD.12cm,8cm,15cm,10cm

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,△ABC中,∠B=90°,AB=5,BC=12,將△ABC沿DE折疊,使點C落在AB邊上的處,并且∥BC,則CD的長是(    ).
A. B.6C.  D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

在△ABC中,AB=24,AC=18,D是AC上一點且AD=12,在AB上取一點E,使A、D、E三點組成的三角形與△ABC相似,則AE=             .

查看答案和解析>>

同步練習冊答案