如圖:AB=AC,AD⊥BC于D、P為AD上的一點,PE⊥AB于E,PE⊥AC于F,求證:PE=PF.

解:∵在三角形ABC中,AB=AC,AD⊥BC于D,
∴∠BAD=∠CAD,即∠EAP=∠FAP,
∵PE⊥AB,PF⊥AC,
∴PE=PF.
分析:在三角形ABC中,AB=AC,AD⊥BC于D,根據(jù)等腰三角形的三線合一的性質(zhì),即可得∠BAD=∠CAD,又由PE⊥AB于點E,PF⊥AC于點F,根據(jù)角平分線的性質(zhì),即可證得PE=PF.
點評:此題考查了等腰三角形三線合一的性質(zhì)與角平分線的性質(zhì),解題的關(guān)鍵是注意數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

24、如圖,AB=AC=AD.
(1)如果AD∥BC,那么∠C和∠D有怎樣的數(shù)量關(guān)系?證明你的結(jié)論;
(2)如果∠C=2∠D,那么你能得到什么結(jié)論?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•虹口區(qū)一模)已知:如圖,AB=AC,∠DAE=∠B.
求證:△ABE∽△DCA.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•來賓)如圖,AB=AC,D,E分別是AB,AC上的點,下列條件中不能證明△ABE≌△ACD的是
( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,AB=AC,∠C=67°,AB的垂直平分線EF交AC于點D,求∠DBC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,AB=AC=10,∠A=40°,AB的垂直平分線MN交AC于點D,求:
(1)∠ABD的度數(shù);
(2)若△BCD的周長是m,求BC的長.

查看答案和解析>>

同步練習(xí)冊答案