【題目】賓館有50間房供游客居住,當每間房每天定價為180元時,賓館會住滿;當每間房每天的定價每增加10元時,就會空閑一間房.如果有游客居住,賓館需對居住的每間房每天支出20元的費用.當房價定為多少元時,賓館當天的利潤為10890元?設房價比定價180元增加x元,則有( )
A.(x﹣20)(50﹣)=10890B.x(50﹣)﹣50×20=10890
C.(180+x﹣20)(50﹣)=10890D.(x+180)(50﹣)﹣50×20=10890
科目:初中數學 來源: 題型:
【題目】如圖,已知 A、B 兩點的坐標分別為(﹣2,0)、(0,1),⊙C 的圓心坐標為(0,﹣1),半徑為 1,E 是⊙C 上的一動點,則△ABE 面積的最大值為( )
A. B. 3+ C. 3+ D. 4+
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB為半圓O的直徑,AD、BC分別與⊙O相切于點A,B,CD與⊙O相切于點E,AD與CD相交于D,BC與CD相交于C,連接OD、OE、OC,已知AD=2,BC=4,對于下列結論:①AD+BC=CD:②∠DOC=90°;③S梯形ABCD=CDOA:④OA=2.其中結論正確的有_____.(請把正確的結論的序號填在橫線上)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為6,M是AB的中點,P是BC邊上的動點,連結PM,以點P為圓心,PM長為半徑作⊙P.當⊙P與正方形ABCD的邊相切時,BP的長為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,菱形ABCD位于平面直角坐標系中,拋物線y=ax2+bx+c經過菱形的三個頂點A、B、C,已知A(﹣3,0)、B(0,﹣4).
(1)求拋物線解析式;
(2)線段BD上有一動點E,過點E作y軸的平行線,交BC于點F,若S△BOD=4S△EBF,求點E的坐標;
(3)拋物線的對稱軸上是否存在點P,使△BPD是以BD為斜邊的直角三角形?如果存在,求出點P的坐標;如果不存在,說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖是拋物線y=ax2+bx+c(a≠0)的部分圖象,其頂點坐標為 (1,n),且與x軸的一個交點在點 (3,0)和 (4,0)之間.則下列結論:①abc>0;②3a+b=0;③a﹣b+c>0;④b2=4a(c﹣n),其中,正確的是_____(填上所有滿足題意的序號).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】瓦子街是上杭城關老城區(qū)改造的商業(yè)文化購物步行街,瓦子街某商場經營的某個品牌童裝,購進時的單價是60元,根據市場調查,在一段時間內,銷售單價是80元時,銷售量是200件,銷售單價每降低1元,就可多售出20件.
求出銷售量件與銷售單價元之間的函數關系式;
求出銷售該品牌童裝獲得的利潤元與銷售單價元之間的函數關系式;
若童裝廠規(guī)定該品牌童裝的銷售單價不低于76元且不高于80元,則商場銷售該品牌童裝獲得的最大利潤是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,拋物線y=ax2+bx﹣3與x軸交于A(1,0)、B兩點,與y軸交于點C,拋物線的對稱軸為直線x=2,交拋物線于點D,交x軸于點E.
(1)請直接寫出:拋物線的函數解析式及點B、點D的坐標;
(2)拋物線對稱軸上的一動點P從點D出發(fā),以每秒1個單位的速度向上運動,連接OP,BP,設運動時間為t秒(t>0).在點P的運動過程中,請求出:當t為何值時,∠OPB=90°?
(3)如圖2,點Q在拋物線上運動(點Q不與點A、B重合),當△QBC的面積與△ABC的面積相等時,請求出點Q的坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com