如圖:AB、CD相交于O,且∠A=∠C,若OA=2,OD=3,OB=1,則OC=________.


分析:由已知的一對角相等,加上一對對頂角相等,利用兩對對應(yīng)角相等的兩三角形相似可得出三角形AOD與三角形COB相似,根據(jù)相似三角形的對應(yīng)邊成比例列出關(guān)系式,將已知的OA,OB,以及OD的長代入,即可求出OC的長.
解答:∵∠A=∠C,∠AOD=∠COB(對頂角相等),
∴△AOD∽△COB,
=,又OA=2,OD=3,OB=1,
則OC==
故答案為:
點評:此題考查了相似三角形的判定與性質(zhì),相似三角形的判定方法有:兩對對應(yīng)角相等的兩三角形相似;兩邊對應(yīng)成比例且夾角相等的兩三角形相似;三邊對應(yīng)成比例的兩三角形相似,以及相似三角形的定義,熟練掌握相似三角形的判定與性質(zhì)是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,AB、CD相交于點O,OB平分∠DOE,若∠DOE=60°,則∠AOC的度數(shù)是
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,AB與CD相交于點O,AD∥BC,AD:BC=1:3,AB=10,則AO的長是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,AB與CD相交于點O,OA=3,OB=5,0D=6.當(dāng)OC=
 
時,圖中的兩個三角形相似.(只需寫出一個條件即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2009•同安區(qū)模擬)已知,如圖,AB、CD相交于點O,AC∥DB,AO=BO,E、F分別是OC、OD中點.
(1)求證:OC=OD;
(2)若∠DBE=90°,BD=3,BE=4,求四邊形AFBE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖直線AB、CD相交于點O,OE平分∠AOD,∠FOC=90°,∠1=30°.求∠2和∠3的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案