已知:如圖,△ABC中,AB=AC,以AB為直徑的⊙O交BC于點P,PD⊥AC于點D.
(1)求證:PD是⊙O的切線;
(2)若∠CAB=120°,AB=6,求BC的值.
(1)證明見解析;(2)BC=6.
【解析】
試題分析:(1)利用等腰三角形的性質得到∠B=∠C和∠B=∠OPB,則∠OPB=∠C,于是可判斷OP∥AC,由于PD⊥AC,所以OP⊥PD,然后根據切線的判定定理可得到PD是⊙O的切線;
(2)由AB為直徑得∠APB=90°,根據等腰三角形的性質得BP=CP,所以∠BAP=60°,在RtBAP中,根據含30度的直角三角形三邊的關系得AP=AB=3,BP=AP=3,所以BC=2BP=6.
試題解析:(1)證明:∵AB=AC,
∴∠B=∠C,
∵OP=OB,
∴∠B=∠OPB,
∴∠OPB=∠C,
∴OP∥AC,
∵PD⊥AC,
∴OP⊥PD,
∴PD是⊙O的切線;
(2)解:連結AP,如圖,
∵AB為直徑,
∴∠APB=90°,
∴BP=CP,
∵∠CAB=120°,
∴∠BAP=60°,
在RtBAP中,AB=6,∠B=30°,
∴AP=AB=3,
∴BP=AP=3,
∴BC=2BP=6.
考點:切線的判定.
科目:初中數學 來源: 題型:
查看答案和解析>>
科目:初中數學 來源: 題型:
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com