【題目】對(duì)于題目:“如圖1,平面上,正方形內(nèi)有一長(zhǎng)為12 、寬為6 的矩形,它可以在正方形的內(nèi)部及邊界通過移轉(zhuǎn)(即平移或旋轉(zhuǎn))的方式,自由地從橫放移轉(zhuǎn)到豎放,求正方形邊長(zhǎng)的最小整數(shù).”甲、乙、丙作了自認(rèn)為邊長(zhǎng)最小的正方形,先求出該邊長(zhǎng),再取最小整數(shù).
甲:如圖2,思路是當(dāng)為矩形對(duì)角線長(zhǎng)時(shí)就可移轉(zhuǎn)過去;結(jié)果取n=14.
乙:如圖3,思路是當(dāng)為矩形外接圓直徑長(zhǎng)時(shí)就可移轉(zhuǎn)過去;結(jié)果取n=14.
丙:如圖4,思路是當(dāng)為矩形的長(zhǎng)與寬之和的倍時(shí)就可移轉(zhuǎn)過去;結(jié)果取n=13.
甲、乙、丙的思路和結(jié)果均正確的是___________ .
【答案】甲、乙
【解析】
根據(jù)矩形長(zhǎng)為12寬為6,可得矩形的對(duì)角線長(zhǎng)為,由矩形在該正方形的內(nèi)部及邊界通過平移或旋轉(zhuǎn)的方式,自由地從橫放變換到豎放,可得該正方形的邊長(zhǎng)不小于,進(jìn)而可得正方形邊長(zhǎng)的最小整數(shù)n的值.
∵矩形長(zhǎng)為12寬為6,
∴矩形的對(duì)角線長(zhǎng)為:,
∵矩形在該正方形的內(nèi)部及邊界通過平移或旋轉(zhuǎn)的方式,自由地從橫放變換到豎放,
∴該正方形的邊長(zhǎng)不小于,
∵,
∴該正方形邊長(zhǎng)的最小整數(shù)n為14.
故甲的思路正確,長(zhǎng)方形對(duì)角線最長(zhǎng),只要對(duì)角線能通過就可以,結(jié)果也正確;
乙的思路正確,長(zhǎng)方形對(duì)角線就是圓的直徑最長(zhǎng),只要圓能通過就可以,結(jié)果也正確;
丙的思路錯(cuò)誤,長(zhǎng)方形對(duì)角線最長(zhǎng),只要對(duì)角線能通過才可以,故丙的思路與結(jié)果都錯(cuò)誤;
故答案為:甲、乙.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2019年4月23日是第二十四個(gè)“世界讀書日“.某校組織讀書征文比賽活動(dòng),評(píng)選出一、二、三等獎(jiǎng)若干名,并繪成如圖所示的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖(不完整),請(qǐng)你根據(jù)圖中信息解答下列問題:
(1)求本次比賽獲獎(jiǎng)的總?cè)藬?shù),并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)求扇形統(tǒng)計(jì)圖中“二等獎(jiǎng)”所對(duì)應(yīng)扇形的圓心角度數(shù);
(3)學(xué)校從甲、乙、丙、丁4位一等獎(jiǎng)獲得者中隨機(jī)抽取2人參加“世界讀書日”宣傳活動(dòng),請(qǐng)用列表法或畫樹狀圖的方法,求出恰好抽到甲和乙的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,拋物線與軸的一個(gè)交點(diǎn)為點(diǎn),與軸的交點(diǎn)為點(diǎn),拋物線的對(duì)稱軸與軸交于點(diǎn),與線段交于點(diǎn),點(diǎn)是對(duì)稱軸上一動(dòng)點(diǎn).
(1)點(diǎn)的坐標(biāo)是________,點(diǎn)的坐標(biāo)是________;
(2)是否存在點(diǎn),使得和相似?若存在,請(qǐng)求出點(diǎn)的坐標(biāo),若不存在,請(qǐng)說明理由;
(3)如圖2,拋物線的對(duì)稱軸向右平移與線段交于點(diǎn),與拋物線交于點(diǎn),當(dāng)四邊形是平行四邊形且周長(zhǎng)最大時(shí),求出點(diǎn)的橫坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2013年某企業(yè)按餐廚垃圾處理費(fèi)25元/噸,建筑垃圾處理費(fèi)16元/噸標(biāo)準(zhǔn),共支付餐廚和建筑垃圾處理費(fèi)5200元,從2014年元月起,收費(fèi)標(biāo)準(zhǔn)上調(diào)為:餐廚垃圾處理費(fèi)100元/噸,建筑垃圾處理費(fèi)30元/噸,若該企業(yè)2014年處理的這兩種垃圾數(shù)量與2013年相比沒有變化,就要多支付垃圾處理費(fèi)8800元,
(1)該企業(yè)2013年處理的餐廚垃圾和建筑垃圾各多少噸?
(2)該企業(yè)計(jì)劃2014年將上述兩種垃圾處理量減少到240噸,且建筑垃圾處理費(fèi)不超過餐廚垃圾處理量的3倍,則2014年該企業(yè)最少需要支付這兩種垃圾處理費(fèi)共多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)小組的兩位同學(xué)準(zhǔn)備測(cè)量?jī)纱苯虒W(xué)樓之間的距離,如圖,兩幢教學(xué)樓AB和CD之間有一景觀池(AB⊥BD,CD⊥BD),一同學(xué)在A點(diǎn)測(cè)得池中噴泉處E點(diǎn)的俯角為42°,另一同學(xué)在C點(diǎn)測(cè)得E點(diǎn)的俯角為45°(點(diǎn)B,E,D在同一直線上),兩個(gè)同學(xué)已經(jīng)在學(xué)校資料室查出樓高AB=15m,CD=20m,求兩幢教學(xué)樓之間的距離BD.
(結(jié)果精確到0.1m,參考數(shù)據(jù):sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,cm,cm,點(diǎn)為的中點(diǎn),點(diǎn)E為AB的中點(diǎn).點(diǎn)為AB邊上一動(dòng)點(diǎn),從點(diǎn)B出發(fā),運(yùn)動(dòng)到點(diǎn)A停止,將射線DM繞點(diǎn)順時(shí)針旋轉(zhuǎn)度(其中),得到射線DN,DN與邊AB或AC交于點(diǎn)N.設(shè)、兩點(diǎn)間的距離為cm,,兩點(diǎn)間的距離為cm.
小濤根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)隨自變量的變化而變化的規(guī)律進(jìn)行了探究.
下面是小濤的探究過程,請(qǐng)補(bǔ)充完整.
(1)列表:按照下表中自變量x的值進(jìn)行取點(diǎn)、畫圖、測(cè)量,分別得到了與的幾組對(duì)應(yīng)值:
x/cm | 0 | 0.3 | 0.5 | 1.0 | 1.5 | 1.8 | 2.0 | 2.5 | 3.0 | 3.5 | 4.0 | 4.5 | 4.8 | 5.0 |
y/cm | 2.5 | 2.44 | 2.42 | 2.47 | 2.79 | 2.94 | 2.52 | 2.41 | 2.48 | 2.66 | 2.9 | 3.08 | 3.2 |
請(qǐng)你通過測(cè)量或計(jì)算,補(bǔ)全表格;
(2)描點(diǎn)、連線:在平面直角坐標(biāo)系中,描出補(bǔ)全后的表格中各組數(shù)值所對(duì)應(yīng)的點(diǎn),并畫出函數(shù)關(guān)于的圖象.
(3)結(jié)合函數(shù)圖象,解決問題:當(dāng)時(shí),的長(zhǎng)度大約是 cm.(結(jié)果保留一位小數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB與⊙O相切于點(diǎn)A,OB及其延長(zhǎng)線交⊙O于C、D兩點(diǎn),F為劣弧AD上一點(diǎn),且滿足∠FDC=2∠CAB,延長(zhǎng)DF交CA的延長(zhǎng)線于點(diǎn)E.
(1)求證:DE=DC;
(2)若tan∠E=2,BC=1,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】紅樹林學(xué)校在七年級(jí)新生中舉行了全員參加的“防溺水”安全知識(shí)競(jìng)賽,試卷題目共10題,每題10分.現(xiàn)分別從三個(gè)班中各隨機(jī)取10名同學(xué)的成績(jī)(單位:分),收集數(shù)據(jù)如下:
1班:90,70,80,80,80,80,80,90,80,100;
2班:70,80,80,80,60,90,90,90,100,90;
3班:90,60,70,80,80,80,80,90,100,100.
整理數(shù)據(jù):
分?jǐn)?shù) 人數(shù) 班級(jí) | 60 | 70 | 80 | 90 | 100 |
1班 | 0 | 1 | 6 | 2 | 1 |
2班 | 1 | 1 | 3 | 1 | |
3班 | 1 | 1 | 4 | 2 | 2 |
分析數(shù)據(jù):
平均數(shù) | 中位數(shù) | 眾數(shù) | |
1班 | 83 | 80 | 80 |
2班 | 83 | ||
3班 | 80 | 80 |
根據(jù)以上信息回答下列問題:
(1)請(qǐng)直接寫出表格中的值;
(2)比較這三組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)和眾數(shù),你認(rèn)為哪個(gè)班的成績(jī)比較好?請(qǐng)說明理由;
(3)為了讓學(xué)生重視安全知識(shí)的學(xué)習(xí),學(xué)校將給競(jìng)賽成績(jī)滿分的同學(xué)頒發(fā)獎(jiǎng)狀,該校七年級(jí)新生共570人,試估計(jì)需要準(zhǔn)備多少張獎(jiǎng)狀?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖象經(jīng)過點(diǎn),直線與軸交于點(diǎn)為二次函數(shù)圖象上任一點(diǎn).
求這個(gè)二次函數(shù)的解析式;
若點(diǎn)在直線的上方,過分別作和軸的垂線,交直線于不同的兩點(diǎn)(在的左側(cè)),求周長(zhǎng)的最大值;
是否存在點(diǎn)使得是以為直角邊的直角三角形?如果存在,直接寫出點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com