【題目】如圖,在平面直角坐標(biāo)系上有點(diǎn) ,點(diǎn) 第一次跳動(dòng)至帶你,第二次點(diǎn)跳動(dòng)至帶你,第三次點(diǎn)跳動(dòng)至帶你,第四次點(diǎn)跳動(dòng)至帶你,…… 依此規(guī)律跳動(dòng)下去,則點(diǎn)與點(diǎn)之間的距離是( )
A. B. C. D.
【答案】C
【解析】
根據(jù)圖形觀察發(fā)現(xiàn),第偶數(shù)次跳動(dòng)至點(diǎn)的坐標(biāo),橫坐標(biāo)是次數(shù)的一半加上1,縱坐標(biāo)是次數(shù)的一半,然后寫(xiě)出即可.
觀察發(fā)現(xiàn), 第1次跳動(dòng)至點(diǎn)的坐標(biāo)是 ,第3次跳動(dòng)至點(diǎn)的坐標(biāo)是,第5次跳動(dòng)至點(diǎn)的坐標(biāo)是,第7次跳動(dòng)至點(diǎn)的坐標(biāo)是,…… 橫坐標(biāo)是跳動(dòng)次數(shù)與1之和的一半相反數(shù),縱坐標(biāo)是跳動(dòng)次數(shù)與1之和的一半,實(shí)際上縱坐標(biāo)是橫坐標(biāo)的相反數(shù);第2次跳動(dòng)至點(diǎn)的坐標(biāo)是(2,1),
第4次跳動(dòng)至點(diǎn)的坐標(biāo)是(3,2),
第6次跳動(dòng)至點(diǎn)的坐標(biāo)是(4,3),
第8次跳動(dòng)至點(diǎn)的坐標(biāo)是(5,4),
…橫坐標(biāo)是跳動(dòng)次數(shù)的一半加上1,縱坐標(biāo)是次數(shù)的一半
故第2017次跳動(dòng)至點(diǎn)的坐標(biāo)是(-1009,1009).
故第2018次跳動(dòng)至點(diǎn)的坐標(biāo)是(1010,1009).
∴1010-(-1009)=2019.故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】地表以下巖層的溫度T(℃)隨著所處的深度h(km)的變化而變化,T與h之間在一定范圍內(nèi)近似地成一次函數(shù)關(guān)系.
(1)根據(jù)下表,求T(℃)與h(km)之間的函數(shù)關(guān)系式;
溫度T(℃) | … | 90 | 160 | 300 | … |
深度h(km) | … | 2 | 4 | 8 | … |
(2)當(dāng)巖層溫度達(dá)到1770℃時(shí),巖層所處的深度為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)為了綠化校園,計(jì)劃購(gòu)買(mǎi)一批榕樹(shù)和香樟樹(shù),經(jīng)市場(chǎng)調(diào)查,榕樹(shù)的單價(jià)比香樟樹(shù)少20元,購(gòu)買(mǎi)3棵榕樹(shù)和2棵香樟樹(shù)共需340元.
(1)榕樹(shù)和香樟樹(shù)的單價(jià)各是多少?
(2)根據(jù)學(xué)校實(shí)際情況,需購(gòu)買(mǎi)兩種樹(shù)苗共150棵,總費(fèi)用不超過(guò)10840元,且購(gòu)買(mǎi)香樟樹(shù)的棵數(shù)不少于榕樹(shù)的1.5倍,請(qǐng)你算算該校本次購(gòu)買(mǎi)榕樹(shù)和香樟樹(shù)共有哪幾種方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AD=2AB,點(diǎn)E,F(xiàn)分別是AD,BC的中點(diǎn),連接AF與BE,CE與DF分別交于點(diǎn)M,N兩點(diǎn),則四邊形EMFN是( )
A. 正方形 B. 菱形 C. 矩形 D. 無(wú)法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖, ∠ADE+∠BCF=180°,BE平分∠ABC, ∠ABC=2∠E.
(1)AD與BC平行嗎?請(qǐng)說(shuō)明理由;
(2)AB與EF的位置關(guān)系如何?為什么?
(3)若AF平分∠BAD,試說(shuō)明: ∠E+∠F=90°.
(注:本題第(1)(2)小題在下面的解答過(guò)程的空格內(nèi)填寫(xiě)理由或數(shù)學(xué)式;第(3)小題要寫(xiě)出解題過(guò)程)
解:(1) ADB∥C,理由如下:
∵∠ADE+∠BCF=180°(已知) ,
∠ADE+∠ADF=180°(平角的定義),
∴∠ADF__________ (______________________),
∴AD∥BC (__________________________);
(2)AB與EF的位置關(guān)系是:互相平行.
∵BE平分∠ABC(已知),
∴A∠BC=2∠ABE(角平分線定義).
又∵∠ABC=2∠E(已知),
∴2∠E=2∠ABE (____________________),
∴∠E=∠ABE(____________________),
∴_____________ (________________________).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形是矩形,點(diǎn)在線段的延長(zhǎng)線上,連接交于點(diǎn),,點(diǎn)是的中點(diǎn).
()求證:.
()若,,,點(diǎn)是的中點(diǎn),求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,AB=6,BC=8,點(diǎn)E是BC邊上一點(diǎn),連接AE,把∠B沿AE折疊,使點(diǎn)B落在點(diǎn)B′處,當(dāng)△CEB′為直角三角形時(shí),BE的長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=ax2+bx+c的圖象如圖,反比例函數(shù)y= 與正比例函數(shù)y=bx在同一坐標(biāo)系內(nèi)的大致圖象是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是由邊長(zhǎng)相同的小正方形組成的網(wǎng)格,A,B,P,Q四點(diǎn)均在正方形網(wǎng)格的格點(diǎn)上,線段AB,PQ相交于點(diǎn)M,則圖中∠QMB的正切值是( )
A.
B.1
C.
D.2
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com