【題目】地表以下巖層的溫度T(℃)隨著所處的深度h(km)的變化而變化,T與h之間在一定范圍內(nèi)近似地成一次函數(shù)關(guān)系.
(1)根據(jù)下表,求T(℃)與h(km)之間的函數(shù)關(guān)系式;
溫度T(℃) | … | 90 | 160 | 300 | … |
深度h(km) | … | 2 | 4 | 8 | … |
(2)當巖層溫度達到1770℃時,巖層所處的深度為多少?
【答案】(1) T=35h+20;(2)當巖層溫度達到1770℃時,巖層所處的深度為50km.
【解析】試題分析:(1)任取兩對數(shù),用待定系數(shù)法求函數(shù)解析式.用其余的數(shù)對驗證.
(2)知道溫度求深度,就是知道函數(shù)值求自變量.
試題解析:解:(1)設(shè)這個函數(shù)解析式為t=kh+b,由表中數(shù)據(jù)得:
解得:k=35,b=20.
∴t與h的函數(shù)關(guān)系式為:t=35h+20.
把其它數(shù)對代入也成立.
(2)當t=1770時,1770=35h+20,解得:h=50,∴當巖層溫度達到1770℃時,巖層所處的深度為50千米.
科目:初中數(shù)學 來源: 題型:
【題目】某電器經(jīng)營業(yè)主兩次購進一批同種型號的掛式空調(diào)和電風扇,第一次購進8臺空調(diào)和20臺電風扇;第二次購進10臺空調(diào)和30臺電風扇.
若第一次用資金17400元,第二次用資金22500元,求掛式空調(diào)和電風扇每臺的采購價各是多少元?
在的條件下,若該業(yè)主計劃再購進這兩種電器70臺,而可用于購買這兩種電器的資金不超過30000元,問該經(jīng)營業(yè)主最多可再購進空調(diào)多少臺?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知∠A=∠AGE,∠D=∠DGC.
(1)試說明AB∥CD;
(2)若∠1+∠2=180°,且∠BEC=2∠B+60°,求∠C的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,從熱氣球C處測得地面A、B兩點的俯角分別是30°、45°,如果此時熱氣球C處的高度CD為100米,點A、D、B在同一直線上,則AB兩點的距離是( )
A.200米
B.200 米
C.220 米
D.100( +1)米
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知正比例函數(shù)y=kx經(jīng)過點A,點A在第四象限,過點A作AH⊥x軸,垂足為點H,點A的橫坐標為3,且△AOH的面積為3.
(1)求正比例函數(shù)的解析式;
(2)在x軸上能否找到一點P,使△AOP的面積為5?若存在,求點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,∠B=45°,BC=10,過點A作AD∥BC,且點D在點A的右側(cè).點P從點A出發(fā)沿射線AD方向以每秒1個單位的速度運動,同時點Q從點C出發(fā)沿射線CB方向以每秒2個單位的速度運動,在線段QC上取點E,使得QE=2,連結(jié)PE,設(shè)點P的運動時間為t秒.
(1)若PE⊥BC,求BQ的長;
(2)請問是否存在t的值,使以A,B,E,P為頂點的四邊形為平行四邊形?若存在,求出t的值;若不存在,請說明理由。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖4,四邊形ACDE、BAFG是以△ABC的邊AC、AB為邊向△ABC外所作的正方形.
求證:(1)EB=FC.(2)EB⊥FC.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系上有點 ,點 第一次跳動至帶你,第二次點跳動至帶你,第三次點跳動至帶你,第四次點跳動至帶你,…… 依此規(guī)律跳動下去,則點與點之間的距離是( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com