(1999•南昌)△ABC中,D,E分別為BC,AC的中點,AB=6cm,則DE=    cm.
【答案】分析:根據(jù)三角形的中位線平行于第三邊并且等于第三邊的一半求解.
解答:解:如圖,∵D,E分別為BC,AC的中點
∴DE是ABC的中位線,
∵AB=6cm,
∴DE=AB=3cm.
故答案為3.
點評:本題主要考查三角形的中位線定理,三角形中位線的性質(zhì)為我們證明兩直線平行,兩條線段之間的數(shù)量關(guān)系提供了一個重要的依據(jù).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:1999年全國中考數(shù)學(xué)試題匯編《三角形》(04)(解析版) 題型:解答題

(1999•南昌)如圖,⊙O′與x軸交于A、B兩點,與y軸交于C、D兩點,圓心O′的坐標(biāo)為(1,-1),半徑為
(1)求A,B,C,D四點的坐標(biāo);
(2)求經(jīng)過點D的切線解析式;
(3)問過點A的切線與過點D的切線是否垂直?若垂直,請寫出證明過程;若不垂直,試說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:1999年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(01)(解析版) 題型:解答題

(1999•南昌)拋物線y=ax2+bx+c(a>0)的頂點為B(-1,m)(m≠0),并且經(jīng)過點A(-3,0).
(1)求此拋物線的解析式(系數(shù)和常數(shù)項用含m的代數(shù)式表示);
(2)若由點A、原點O與拋物線上的一點P所構(gòu)成的三角形是等腰直角三角形,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:1999年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(02)(解析版) 題型:解答題

(1999•南昌)如圖,⊙O′與x軸交于A、B兩點,與y軸交于C、D兩點,圓心O′的坐標(biāo)為(1,-1),半徑為
(1)求A,B,C,D四點的坐標(biāo);
(2)求經(jīng)過點D的切線解析式;
(3)問過點A的切線與過點D的切線是否垂直?若垂直,請寫出證明過程;若不垂直,試說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:1999年江西省南昌市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(1999•南昌)如圖,⊙O′與x軸交于A、B兩點,與y軸交于C、D兩點,圓心O′的坐標(biāo)為(1,-1),半徑為
(1)求A,B,C,D四點的坐標(biāo);
(2)求經(jīng)過點D的切線解析式;
(3)問過點A的切線與過點D的切線是否垂直?若垂直,請寫出證明過程;若不垂直,試說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:1999年江西省南昌市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(1999•南昌)拋物線y=ax2+bx+c(a>0)的頂點為B(-1,m)(m≠0),并且經(jīng)過點A(-3,0).
(1)求此拋物線的解析式(系數(shù)和常數(shù)項用含m的代數(shù)式表示);
(2)若由點A、原點O與拋物線上的一點P所構(gòu)成的三角形是等腰直角三角形,求m的值.

查看答案和解析>>

同步練習(xí)冊答案