【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=6cm,點P沿AB邊從點A開始以2cm/s的速度向點B運動,點Q沿CB邊從點C開始以1cm/s的速度向點B運動,P、Q同時出發(fā),用t(s)表示運動的時間(0≤t≤5).
(1)當(dāng)t為何值時,以P、Q、B為頂點的三角形與△ABC相似.
(2)分別過點A,B作直線CP的垂線,垂足為D,E,設(shè)AD+BE=y,求y與t的函數(shù)關(guān)系式;并求當(dāng)t為何值時,y有最大值.
(3)直接寫出PQ中點移動的路徑長度.
【答案】
(1)
解:∵∠ACB=90°,AC=8cm,BC=6cm,
∴BC=10cm.
由題意可知,PA=2t,BP=10﹣2t,CQ=t,BQ=6﹣t.
①若 ,則△BQP∽△BCA.
即 .解得t=0;
②若 ,則△BQP∽△BAC.
即 .解得t= .
故當(dāng)t=0或t= 時,以P,Q,C為頂點的三角形與△ABC相似
(2)
解:如圖1,作PF⊥AC,垂足為F.
∴△APF∽△ABC.
∴ ,即 ,
解得PF= ,AF= .
∴CF=8﹣ ,
∴CP= =2 ,
∵S△APC= CPAD= PFAC= 8= ,
∴AD= .
同理BE= .
∴y=AD+BE= + = = ,
y= = ,當(dāng)t= 時,y的最大值為10cm
(3)
解:如圖2,設(shè)PQ的中點為M,以C為原點,以AC所在直線為x軸,建立平面直角坐標(biāo)系,
依題意,可知0≤t≤5,當(dāng)t=0時,點M1的坐標(biāo)為(4,0);
當(dāng)t=5時,點M2的坐標(biāo)為(0,5.5),設(shè)直線M1M2的解析式為y=kx+b,
∴ ∴ ,
∴直線M1M2的解析式為y=﹣ x+ .
由(2)知點Q(0,t),P(8﹣ , ),
∴在運動過程中,線段PQ中點M3的坐標(biāo)為(4﹣ , ),
把x=4﹣ ,代入y=﹣ x+ ,得y= ,
∴點M3在M1M2直線上,
∴線段PQ中點M所經(jīng)過的路徑長為 = cm.
【解析】(1)根據(jù)勾股定理得到BC=10,根據(jù)已知條件得到PA=2t,BP=10﹣2t,CQ=t,BQ=6﹣t.根據(jù)相似三角形的性質(zhì)列方程即可得到結(jié)論;(2)如圖1,作PF⊥AC,垂足為F.根據(jù)相似三角形的性質(zhì)得到PF= ,AF= .求得CF=8﹣ ,根據(jù)勾股定理得到CP= =2 ,根據(jù)三角形的面積即可得到結(jié)論;(3)如圖2,設(shè)PQ的中點為M,以C為原點,以AC所在直線為x軸,建立平面直角坐標(biāo)系,依題意,可知0≤t≤5,當(dāng)t=0時,點M1的坐標(biāo)為(4,0);當(dāng)t=5時,點M2的坐標(biāo)為(0,5.5),求得直線M1M2的解析式為y=﹣ x+ .根據(jù)勾股定理即可得到結(jié)論.
【考點精析】解答此題的關(guān)鍵在于理解確定一次函數(shù)的表達(dá)式的相關(guān)知識,掌握確定一個一次函數(shù),需要確定一次函數(shù)定義式y(tǒng)=kx+b(k不等于0)中的常數(shù)k和b.解這類問題的一般方法是待定系數(shù)法,以及對勾股定理的概念的理解,了解直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為配合全市“禁止焚燒秸稈”工作,某學(xué)校舉行了“禁止焚燒秸稈,保護(hù)環(huán)境,從我做起”為主題的演講比賽,賽后組委會整理參賽同學(xué)的成績,并制作了如圖不完整的頻數(shù)分布表和頻數(shù)分布直方圖
分?jǐn)?shù)段(分手為x分) | 頻數(shù) | 百分比 |
60≤x<70 | 8 | 20% |
70≤x<80 | a | 30% |
80≤x≤90 | 16 | b% |
90≤x<100 | 4 | 10% |
請根據(jù)圖表提供的信息,解答下列問題:
(1)表中的a= , b=;請補全頻數(shù)分布直方圖;
(2)若用扇形統(tǒng)計圖來描述成績分布情況,則分?jǐn)?shù)段70≤x<80對應(yīng)扇形的圓心角的度數(shù)是 .
(3)競賽成績不低于90分的4名同學(xué)中正好有2名男同學(xué),2名女同學(xué).學(xué)校從這4名同學(xué)中隨機抽2名同學(xué)接受電視臺記者采訪,則正好抽到一名男同學(xué)和一名女同學(xué)的概率為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某調(diào)查公司對本區(qū)域的共享單車數(shù)量及使用次數(shù)進(jìn)行了調(diào)查發(fā)現(xiàn),今年3月份第1周共有各類單車1000輛,第2周比第1周增加了10%,第3周比第2周增加了100輛,調(diào)查還發(fā)現(xiàn)某款單車深受群眾喜愛,第1周該單車的每輛平均使用次數(shù)是這一周所有單車平均使用次數(shù)的2.5倍,第2、第3周該單車的每輛平均使用次數(shù)都比前一周增長一個相同的百分?jǐn)?shù)m,第3周所有單車的每輛平均使用次數(shù)比第1周增加的百分?jǐn)?shù)也是m,而且第3周該款單車(共100輛)的總使用次數(shù)占到所有單車總使用次數(shù)的四分之一.(注:總使用次數(shù)=每輛平均使用次數(shù)×車輛數(shù))
(1)求第3周該區(qū)域內(nèi)各類共享單車的數(shù)量;
(2)求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),在△ABC中,∠C=90°,AB=5cm,BC=3cm,動點P在線段AC上以5cm/s的速度從點A運動到點C,過點P作PD⊥AB于點D,將△APD繞PD的中點旋轉(zhuǎn)180°得到△A′DP,設(shè)點P的運動時間為x(s).
(1)當(dāng)點A′落在邊BC上時,求x的值;
(2)在動點P從點A運動到點C過程中,當(dāng)x為何值時,△A′BC是以A′B為腰的等腰三角形;
(3)如圖(2),另有一動點Q與點P同時出發(fā),在線段BC上以5cm/s的速度從點B運動到點C,過點Q作QE⊥AB于點E,將△BQE繞QE的中點旋轉(zhuǎn)180°得到△B′EQ,連結(jié)A′B′,當(dāng)直線A′B′與△ABC的一邊垂直時,求線段A′B′的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,D是BC邊上一點,E是AD的中點,過點A作BC的平行線交CE的延長線于F.
(1)求證:△AEF≌△DEC;
(2)連接BF,若AF=DB,AB=AC,試判斷四邊形AFBD的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖①、②、③均是4×4的正方形網(wǎng)格,每個小正方形頂點叫做格點,點O和線段AB的端點在格點上,按要求完成下列作圖.
(1)在圖①、②中分別找到格點C、D,使以點A、B、C、D為頂點的四邊形是平行四邊形,且點O到這個四邊形的兩個端點的距離相等,畫出兩個這樣的平行四邊形.
(2)在圖③中找到格點E、F,使以A、B、E、F為頂點的四邊形的面積最大,且點O到這個四邊形的兩個端點的距離相等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)九年級舞蹈興趣小組8名學(xué)生的身高分別為(單位:cm):168,165,168,166,170,170,176,170,則下列說法錯誤的是( )
A.這組數(shù)據(jù)的眾數(shù)是170
B.這組數(shù)據(jù)的中位數(shù)是169
C.這組數(shù)據(jù)的平均數(shù)是169
D.若從8名學(xué)生中任選1名學(xué)生參加校文藝會演,則這名學(xué)生的身高不低于170的概率為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O中,直徑CD⊥弦AB于E,AM⊥BC于M,交CD于N,連接AD.
(1)求證:AD=AN;
(2)若AB=8,ON=1,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在圓心角為90°的扇形AOB中,半徑OA=3,OC=AC,OD= BD,F(xiàn)是弧AB的中點.將△OCD沿CD折疊,點O落在點E處,則圖中陰影部分的面積為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com