如圖,在等腰直角三角形ABC中,AD為斜邊上的高,點E、F分別在AB、AC上,△AED經(jīng)過旋轉(zhuǎn)到了△CFD的位置.
(1)△BED和△AFD之間可以看成是經(jīng)過怎樣的變換得到的?
(2)AD與EF相交于點G,試判斷∠AED與∠AGF的大小關(guān)系,并說明理由.
(1)∵△AED經(jīng)過旋轉(zhuǎn)到了△CFD的位置,
∴DE=DF,AD=CD,
∵在等腰直角三角形ABC中,AD為斜邊上的高,
∴AD=AD=BD,∠ADC=∠CDB=90°,
∴∠EDF=90°,
∴△AFD可以看成是△BED繞點D按順時針方向旋轉(zhuǎn)90°得到的;

(2)∠AED=∠AGF.
理由:∵DF=DE,∠FDE=90°,
∴∠DFE=∠DEF=45°,
∵AB=AC,AD⊥BC,
∴∠BAD=∠CAD=45°,
∵∠AGF=∠DAE+∠AEG=45°+∠AEG,
∠AED=∠DEF+∠AEF=45°+∠AEG,
∴∠AED=∠AGF.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標系中放置著一個小旗ABCD,其四個頂點的坐標分別A(1,4),B(4,3),C(1,2),D(1,-1).
(1)畫出將小旗繞點D逆時針旋轉(zhuǎn)90°得到的圖形A1B1C1D;
(2)畫出圖形A1B1C1D關(guān)于原點O成中心對稱的圖象A2B2C2D2;
(3)點B2的坐標為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

將一副直角三角板放置像圖1那樣,等腰直角三角板ACB的直角頂點A在直角三角板EDF的直角邊DE上,點C、D、B、F在同一直線上,點D、B是CF的三等分點,CF=6,∠F=30°.
(1)三角板ACB固定不動,將三角板EDF繞點D逆時針旋轉(zhuǎn)至EFCB(如圖2),試求DF旋轉(zhuǎn)的度數(shù);點A在EF上嗎?為什么?
(2)在圖2的位置,將三角板EDF繞點D繼續(xù)逆時針旋轉(zhuǎn)15°.請問此時AC與DF有何位置關(guān)系?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,E、F分別是正方形ABCD的邊BC、CD上的點,BE=CF,連接AE、BF.將△ABE繞正方形的中心按逆時針方向旋轉(zhuǎn)到△BCF,旋轉(zhuǎn)角為α(0°<α<180°),則∠α=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖可以看作是一個等腰直角三角形旋轉(zhuǎn)若干次而生成的,則每次旋轉(zhuǎn)的度數(shù)是______度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,△ABC的頂點坐標分別為A(1,1),B(7,2),C(3,4).
(1)將△ABC平移后得到△A1B1C1,已知點A平移到點A1(-5,-2).畫出△A1B1C1,并寫出B1,C1兩點的坐標;
(2)將B1,C1兩點繞點A1按逆時針方向旋轉(zhuǎn)90°,分別得到點B2,C2.畫出△A1B2C2,并寫出B2,C2兩點的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知矩形ABCD的邊AB=4,AD=3,現(xiàn)將矩形ABCD如圖放在直線l上,且沿著l向右作無滑動地翻滾,當它翻滾到位置A1B1C1D1時,計算:

(1)頂點A所經(jīng)過的路線長為______;
(2)點A經(jīng)過的路線與直線l所圍成的面積為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點A逆時針旋轉(zhuǎn)30°至△ADE的位置.則∠DAC=______度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

任畫一個直角△ABC,其中∠B=90°,取△ABC外一點P為旋轉(zhuǎn)中心,按逆時針方向旋轉(zhuǎn)60°,作出旋轉(zhuǎn)后的三角形.

查看答案和解析>>

同步練習(xí)冊答案