【題目】看圖填空:

(1)過(guò)點(diǎn)________和點(diǎn)_______作直線;

(2)延長(zhǎng)線段_________________,且使________=_________

(3)過(guò)點(diǎn)_________作直線_______的垂線;

(4)作射線_______,使_____平分________

【答案】A B ACBBCACMbOCOCAOB

【解析】

根據(jù)平面圖形的基本知識(shí)依次分析各圖形即可得到結(jié)果.

(1)過(guò)點(diǎn)A和點(diǎn)B作直線;
(2)延長(zhǎng)線段ACB,且使BC=AC;
(3)過(guò)點(diǎn)M作直線b的垂線;
(4)作射線OC,使OC平分∠AOB.

故答案為:(1). A (2). B (3). AC (4). B (5). BC (6). AC (7). M (8). b (9). OC (10). OC (11). AOB

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,E、F分別是邊AD、CD上的點(diǎn),AE=ED,DF= DC,連接EF并延長(zhǎng)交BC的延長(zhǎng)線于點(diǎn)G.
(1)求證:△ABE∽△DEF;
(2)若正方形的邊長(zhǎng)為4,求BG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為1,AC,BD是對(duì)角線.將△DCB繞著點(diǎn)D順時(shí)針旋轉(zhuǎn)45°得到△DGH,HG交AB于點(diǎn)E,連接DE交AC于點(diǎn)F,連接FG.
則下列結(jié)論:
①四邊形AEGF是菱形
②△AED≌△GED
③∠DFG=112.5°
④BC+FG=1.5
其中正確的結(jié)論是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四邊形ABCD是正方形,等腰直角△AEF的直角頂點(diǎn)E在直線BC上(不與點(diǎn)B,C重合),F(xiàn)M⊥AD,交射線AD于點(diǎn)M.

(1)當(dāng)點(diǎn)E在邊BC上,點(diǎn)M在邊AD的延長(zhǎng)線上時(shí),如圖①,求證:AB+BE=AM;
(提示:延長(zhǎng)MF,交邊BC的延長(zhǎng)線于點(diǎn)H.)
(2)當(dāng)點(diǎn)E在邊CB的延長(zhǎng)線上,點(diǎn)M在邊AD上時(shí),如圖②;當(dāng)點(diǎn)E在邊BC的延長(zhǎng)線上,點(diǎn)M在邊AD上時(shí),如圖③.請(qǐng)分別寫(xiě)出線段AB,BE,AM之間的數(shù)量關(guān)系,不需要證明;
(3)在(1),(2)的條件下,若BE=,∠AFM=15°,則AM=.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為聲援揚(yáng)州“運(yùn)河申遺”,某校舉辦了一次運(yùn)河知識(shí)競(jìng)賽,滿(mǎn)分10分,學(xué)生得分為整數(shù),成績(jī)達(dá)到6分以上(包括6分)為合格,達(dá)到9分以上(包含9分)為優(yōu)秀.這次競(jìng)賽中甲乙兩組學(xué)生成績(jī)分布的條形統(tǒng)計(jì)圖如圖所示.

(1)補(bǔ)充完成下面的成績(jī)統(tǒng)計(jì)分析表:

組別

平均分

中位數(shù)

方差

合格率

優(yōu)秀率

甲組

6.7

3.41

90%

20%

乙組

7.5

1.69

80%

10%

(2)小明同學(xué)說(shuō):“這次競(jìng)賽我得了7分,在我們小組中排名屬中游略偏上!”觀察上表可知,小明是 組的學(xué)生;(填“甲”或“乙”)

(3)甲組同學(xué)說(shuō)他們組的合格率、優(yōu)秀率均高于乙組,所以他們組的成績(jī)好于乙組.但乙組同學(xué)不同意甲組同學(xué)的說(shuō)法,認(rèn)為他們組的成績(jī)要好于甲組.請(qǐng)你給出兩條支持乙組同學(xué)觀點(diǎn)的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四邊形ABCD是菱形,AB=4,∠ABC=60°,∠EAF的兩邊分別與射線CB,DC相交于點(diǎn)E,F(xiàn),且∠EAF=60°.
(1)如圖1,當(dāng)點(diǎn)E是線段CB的中點(diǎn)時(shí),直接寫(xiě)出線段AE,EF,AF之間的數(shù)量關(guān)系;
(2)如圖2,當(dāng)點(diǎn)E是線段CB上任意一點(diǎn)時(shí)(點(diǎn)E不與B、C重合),求證:BE=CF;
(3)如圖3,當(dāng)點(diǎn)E在線段CB的延長(zhǎng)線上,且∠EAB=15°時(shí),求點(diǎn)F到BC的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】市政府建設(shè)一項(xiàng)水利工程,某運(yùn)輸公司承擔(dān)運(yùn)送總量為106m3的土石方任務(wù),該公司有甲、乙兩種型號(hào)的卡車(chē)共100輛,甲型車(chē)平均每天可以運(yùn)送土石方80m3,乙型車(chē)平均每天可以運(yùn)送土石方120m3,計(jì)劃100天完成運(yùn)輸任務(wù).

(1)該公司甲、乙兩種型號(hào)的卡車(chē)各有多少臺(tái)?

(2)如果該公司用原有的100輛卡車(chē)工作了40天后,由于工程進(jìn)度的需要,剩下的所有運(yùn)輸任務(wù)必須在50天內(nèi)完成,在甲型卡車(chē)數(shù)量不變情況下,公司至少應(yīng)增加多少輛乙型卡車(chē)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知一個(gè)直角三角形紙片ACB,其中∠ACB=90°,AC=4,BC=3,E、F分別是AC、AB邊上點(diǎn),連接EF.

(1)圖①,若將紙片ACB的一角沿EF折疊,折疊后點(diǎn)A落在AB邊上的點(diǎn)D處,且使S四邊形ECBF=3SEDF , 求AE的長(zhǎng);
(2)如圖②,若將紙片ACB的一角沿EF折疊,折疊后點(diǎn)A落在BC邊上的點(diǎn)M處,且使MF∥CA.
①試判斷四邊形AEMF的形狀,并證明你的結(jié)論;
②求EF的長(zhǎng);
(3)如圖③,若FE的延長(zhǎng)線與BC的延長(zhǎng)線交于點(diǎn)N,CN=1,CE= ,求 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在△ABC中,∠A=30°,∠B=60°。

(1)作∠B的平分線BD,交AC于點(diǎn)D;作AB的中點(diǎn)E(要求:尺規(guī)作圖,保留作圖痕跡)

(2)連接DE,求證:△ADE≌△BDE。

查看答案和解析>>

同步練習(xí)冊(cè)答案